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6.4 Nosé-Hoover thermostat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
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Lecture 1: Math Reviews

1.1 Taylor expansion

• Expand function f (x+ a) around x with a→ 0

f (x+ a) = f (x) + f ′(x)a+
1
2
f ′′(x)a2 + · · ·

=
∞∑
j=0

aj

j!
dj

dxj
f (x+ a)

∣∣∣∣∣∣
a=0

(1.1)

• Since eλx =
∑∞
j=0x

jλj /j!

f (x+ a) = exp
(
a

d
dx

)
f (x) (1.2)

• Common Taylor series expansions. For |x| < 1,

1
1 + x

= 1− x+ x2 − x3 + · · · =
∞∑
j=0

(−1)jxj (1.3)

1
1− x

= 1 + x+ x2 + x3 + · · · =
∞∑
j=0

xj (1.4)

sin(x) = x − x
3

3!
+
x5

5!
+ · · · =

∞∑
j=0

(−1)j

(2j + 1)!
x2j+1 (1.5)

cos(x) = 1− x
2

2!
+
x4

4!
+ · · · =

∞∑
j=0

(−1)j

(2j)!
x2j (1.6)

ln(1 + x) = x − 1
2
x2 +

1
3
x3 + · · · =

∞∑
j=0

(−1)j+1

j + 1
x(j+1) (1.7)

ln(1− x) = x+
1
2
x2 +

1
3
x3 + · · · =

∞∑
j=0

1
j + 1

x(j+1) (1.8)
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1.2. PROBABILITY THEORY

1.2 Probability theory

1.2.1 Discrete systems

Suppose measuring a property Ê results n discrete values E1,E2, . . . ,En. Let

N = number of measurements
Ni = number of measurements of Ei

Then
Pi = Probability to get Ei = lim

N→∞

Ni
N
≡ P (Ei) (1.9)

Properties of Pi :

1. 0 ≤ Pi ≤ 1

2.
∑n
i=1 Pi = 1

Averages:

E =
n∑
i=1

EiPi (1.10)

E2 =
n∑
i=1

E2
i Pi (1.11)

f (E) =
n∑
i=1

f (Ei)Pi (1.12)

(1.13)

Variance:

σ2
E = E2 −E2

= (E −E)2 (1.14)

• σ2
E measures the dispersion of the probability distribution: how spread out the val-

ues are.
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1.2. PROBABILITY THEORY

• In general, σ2
E , 0 unless Pij = δij for some certain j, where δij is a Kronecker delta

function:

Pi = δij =

1 if i = j
0 otherwise

=⇒ E = Ej . (1.15)

• Chebyshev’s Inequality

Prob
(∣∣∣E −E∣∣∣ ≥ λ) ≤ σ2

E

λ2 (1.16)

Joint Probability:

Now we are interested in two properties Ê and Ĝ. Measuring Ê results in a set of values
{Ei}i=1,...,nE , and measuring Ĝ results in a set of values {Gj}j=1,...,nG . Now we measure Ê and
Ĝ simultaneously, and repeat the measurement N times, resulting in N pairs of values
(Ei ,Gj). Let

nij = number of pairs of (Ei ,Gj)

Then
Pij = lim

N→∞

nij
N
≡ P (Ei ,Gj) ≡ joint probability (1.17)

Properties of Pij

1.
∑nE
i=1

∑nG
j=1 P (Ei ,Gj) = 1

2.
∑nE
i=1 P (Ei ,Gj) = P (Gj)

3.
∑nG
j=1 P (Ei ,Gj) = P (Ei)

4. If Ê and Ĝ are independent, then P (Ei ,Gj) = P (Gj)P (Ei)

1.2.2 Combinatorics

In the following, we will assume that the objects are distinguishable objects.

• Permutation: The number of permutations of N objects is N ! =N (N −1) · · ·1. (Note:
0! = 1)
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1.2. PROBABILITY THEORY

• Combination: The number of ways of assigning N objects into r distinguishable
containers is

t =
N !∏r
i=1Ni !

(1.18)

where Ni is the number of objects in the ith container.

– Example: Number of ways of selecting k objects from a larger set of N objects is(
N
k

)
=

N !
k!(N − k)!

(1.19)

where in this example we have two containers with size k and size (N − k).

• Coin Tossing: Suppose we have an even coin. Let

N = Number of total tosses
k = Number of heads

then the probability of having k heads in N tosses is

P (k,N ) =
(1
2

)N (
N
k

)
(1.20)

• Coin Tossing (general case): Suppose now the coin is uneven, and the probability
of getting a head is p, and the probability of getting a tail is q, where p+q = 1. What
is the probability of getting k heads in N tosses? This is determined by the Bernoulli
or binomial probability

P (k,N ) = pkqN−k
(
N
k

)
(1.21)

Note that

N∑
k=0

P (k,N ) = qN + pqN−1
(
N
1

)
+ p2qN−2

(
N
2

)
+ · · ·+ pN = (p+ q)N = 1 (1.22)

– Statistical properties:

k =Np

k2 =Np+N (N − 1)p2

σ2
k =Npq

Prob
(∣∣∣k − k∣∣∣ ≥ λ) ≤ Npq

λ2

Note that the distribution narrows with N - typical behavior if k ∼ n.
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1.2. PROBABILITY THEORY

• Generating Function: We define the generating function of a distribution P (k,N ) as

F(x) =
N∑
k=0

P (k,N )xk . (1.23)

Note that F(1) = 1 since the distribution is normalized. If

P (k,N ) = pkqN−k
(
N
k

)
then

F(x) = (q+ px)N

– Generating functions can be used for calculating the moments of the distribu-
tion:

k =
(
x

d
dx
F(x)

)
x=1

(1.24)

kl =

(x d
dx

)l
F(x)


x=1

(1.25)

(1.26)

1.2.3 Continuous systems

Suppose measuring an observable X̂ results in a continuous value x. The probability of
getting values between x and x+ dx is p(x)dx, where p(x) is called the probability density.

Properties of p(x):

1. Positive definite: p(x) ≥ 0.

2. Normalized:
∫∞
−∞dx p(x) = 1.

Averages:

x =
∫ ∞
−∞

dx xp(x) (1.27)

f (x) =
∫ ∞
−∞

dx f (x)p(x) (1.28)

σ2
x = x2 − x2 =

∫ ∞
−∞

dx (x2 − x2)p(x) (1.29)
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1.3. DELTA FUNCTION

- Example: consider the probability density p(x) = ce−αx
2
, we have

c =

√
α
π

σ2
x =

1
2α

Therefore we get the Gaussian distribution:

p(x) =
1√

2πσ2
x

e
− x2

2σ2
x (1.30)

When σx → 0, we get an infinitely narrow distribution, called Dirac delta function:
the probability density has all weights on one value. We will talk more about the
Dirac Delta function in the next section.

1.3 Delta function

The Dirac delta function can be seen as a special probability density where all the weights
rest on one x value (usually on x = 0). The mathematical definition of the (Dirac) delta
function is

δ(x) =

∞ x = 0
0 x , 0

(1.31)

Eq. (1.31) is rather abstract. We can see it in a limiting manner: consider a very small
value ϵ≪ 1,

δ(ϵ)(x) =

1
ϵ −ϵ2 ≤ x ≤

ϵ
2

0 |x| > ϵ
2

(1.32)

We can derive the following properties:∫ ∞
−∞

dx δ(ϵ)(x) =
∫ ϵ

2

− ϵ2
dx

1
ϵ

= 1 (1.33)∫ ∞
−∞

dx f (x)δ(ϵ)(x) =
∫ ϵ

2

− ϵ2
dx f (x)δ(ϵ)(x) ≈

∫ ϵ
2

− ϵ2
dx f (0)δ(ϵ)(x) = f (0) (1.34)

The Delta function in Eq. (1.31) can be derived by δ(x) = limϵ→0δ
(ϵ)(x).
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1.4. MATRIX DIAGONALIZATION

Other representations of delta function in limit ϵ→ 0:

δ(ϵ)(x) =
1

2ϵ
e−|x|/ϵ

δ(ϵ)(x) =
1
π

ϵ

x2 + ϵ2

δ(ϵ)(x) =
1

ϵ
√
π
e−x

2/ϵ2

δ(ϵ)(x) =
1
π

sin(x/ϵ)
x

The expectation value of a continuous function f (x) under the above forms of probability
density is

lim
ϵ→0

∫ ∞
−∞

dx f (x)δ(ϵ)(x − x0) = f (x0) (1.35)

Some properties of delta function

1. δ(−x) = δ(x).

2. δ(cx) = 1
|c|δ(x).

3. δ (g(x)) =
∑
j
δ(x−xj )
|g ′(xj )|

where g(xj) = 0 and g ′(xj) , 0.

4. g(x)δ(x − x0) = g(x0)δ(x − x0).

5.
∫∞
−∞dx δ(x − y)δ(x − z) = δ(y − z).

6.
∫∞
−∞dx dδ(x−x0)

dx f (x) = −
∫∞
−∞dx δ(x − x0)f ′(x) = −f ′(x0)

1.4 Matrix diagonalization

Given a square matrix A, we are interested to find its eigenvalues λ and corresponding
eigenvectors v, which satisfy

Av = λv (1.36)

Process

(1)→ (A−λI)v = 0 (1.37)

where I is the identity matrix. If (1.37) has a solution, then

det(A−λI) = 0 (1.38)
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1.4. MATRIX DIAGONALIZATION

det(Avi −λivi) results in a polynomial of λi , which is called the characteristic polynomial
of A. If then (1.38) can be solved, then A is diagonalizable,

Hermitian Matrices

If A is a Hermitian matrix, then
A† = A (1.39)

where A† is the complex conjugate transpose of A (A† = (A∗)T ).

Hermitian matrices are diagonalizable and the eigenvalues are real.

Example

A =
(
0 1
1 0

)

A−λI =
(
−λ 1
1 −λ

)
det(A−λI) =λ2 − 1 = 0

The two eigenvalues are λ1 = 1 and λ2 = −1. Now let’s compute the eigenvectors.

(A−λ1I)v1 = 0 =⇒
(
−1 1
1 −1

)
v1 = 0 =⇒ v1 =

1
√

2

(
1
1

)

(A−λ1I)v2 = 0 =⇒
(
1 1
1 1

)
v1 = 0 =⇒ v1 =

1
√

2

(
1
−1

)
Note that the pre-factor 1/

√
2 is picked to normalize the eigenvectors.

One can organize the eigenvectors into a matrix

V = [v1 v2] =
1
√

2

(
1 1
1 −1

)
and define the diagonal matrix

D =
(
λ1 0
0 λ2

)
=

(
1 0
0 −1

)
then A is related to D by

AV = DV or A = VDV−1

13



Lecture 2: Classical Mechanics

2.1 Newton’s laws of motion

Newton’s laws of motion are used to describe the macroscopic world, where the mass of
an object is large enough that the quantum effect can be neglected. The three laws are
summariezed as following:

1. In the absence of external forces, a body will either be at rest or execute motion
along a straight line with a constant velocity v.

2. The action of an external force F on a body produces an acceleration a equal to the
force divided by the mass m of the body:

a =
F
m
, F =ma. (2.1)

3. If body A exerts a force on body B FAB, then body B exerts an equal and opposite
force on body A: FBA = −FAB.

Note that Newton’s second law indicates the first law.

Some important concepts in Newtonian mechanics scheme are

Time : t

Position : r(t) = (x(t), y(t), z(t))

Velocity : v(t) =
dr
dt

= ṙ

Acceleration : a(t) =
dv
dt

=
d2r
dt2

= r̈

Momentum : p(t) =mv(t) =mṙ
Force : F =ma =mr̈ =mṗ

Work :WAB(path) =
∫ B

A
F ·dl =

∫ B

A
F cos(θ)dl

(2.2)

where θ is the angle between the force vector and the path.

14



2.1. NEWTON’S LAWS OF MOTION

A trajectory is a specification of the object’s position as a function of time t and initial
conditions r(0) and v(0).

r(t) = r(0) + vt (2.3)

2.1.1 Multiple objects

We have discussed the Newtonian mechanics for a single object. Now let’s look into sys-
tems with multiple objects. The positions ofN objects are specified by {r1(t), . . . ,rN (t)} and
the velocities are {v1(t), . . . ,vN (t)}. It is often preferred to work with the momenta instead
of velocities: {p1(t), . . . ,pN (t)}, where

pi =mivi =mi ṙi (2.4)

The classical dynamics of an N -object system in three-dimension can be specified by 6N
functions:

{r1(t), . . . ,rN (t),p1(t), . . . ,pN (t)} (2.5)

The above 6N space is called phase space. We define a point in the phase space as the phase
space vector

x = (r1(t), . . . ,rN (t),p1(t), . . . ,pN (t)) (2.6)

Examples of phase diagrams can be found in Tuckerman pp.6− 9.

One main difference between a system with multiple objects and a system with one single
object is that there exist interactions among objects in a multi-object system. Usually an
object i will experience a force Fi due to all the other objects:

Fi = Fi(r1,r2, . . . ,rN ; ṙi) (2.7)

If the forces are pairwise, then

Fi =
∑
j,i

fji(ri − rj) + fext(ri , ṙi) (2.8)

The equation of motion of an N -object system is then

mi r̈i = Fi(r1,r2, . . . ,rN ; ṙi), with i = 1, . . . ,N . (2.9)

which can be solved given the initial conditions {r1(0), . . . ,rN (0)} and {v1(0), . . . ,vN (0)}.

Discussion For a system consisting of microscopic particles (such as atoms), the number
of particles N ∼ 1023, and the structure of the interactions fji(ri − rj) is usually compli-
cated. Solving Eq. (2.9) for all the N particles is basically impossible. The rules of statisti-
cal mechanics provide a connection between the microscopic laws and macroscopic laws,
which can be used to alleviate the computational cost (or the curse of dimension). How-
ever, additional approximations are still necessary for practical simulations. For instance,
instead of considering 1023 particles, one could consider a smaller number and extrap-
olate to the so-called thermodynamic limit; one could also introduce approximations to
the interacting forces to reduce the complexity of the computation. This brings us to the
research subject called molecular dynamics.
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2.2. LAGRANGIAN FORMULATION

2.2 Lagrangian Formulation

We first introduce the concept of conservative forces. Conservative forces are defined as
vector quantities that are derivable from a scalar function U (r1, . . . ,rN ), known as a poten-
tial energy function:

Fi(r1, . . . ,rN ) = −∇iU (r1, . . . ,rN ) (2.10)

where ∇i = ∂/∂ri = (∂/∂xi ,∂/∂yi ,∂/∂zi).

Next we define the kinetic energy due to the movement of the objects:

K(ṙ1, . . . , ṙN ) =
1
2

N∑
i=1

mi ṙ
2
i =

N∑
i=1

p2
i

2mi
(2.11)

Note that the potential energy U only depends on the positions while the kinetic energy
K only depends on the velocities (or momenta).

The Lagrangian L is defined as the difference between the kinetic and potential energies:

L(r1, . . . ,rN ; ṙ1, . . . , ṙN ) = K(ṙ1, . . . , ṙN )−U (r1, . . . ,rN ) (2.12)

The Lagrandian serves as the generator of the equation of motion (EOM) via the Euler-
Lagrange equation:

d
dt

(
∂L
∂ṙi

)
− ∂L
∂ri

= 0 (2.13)

Substituting Eq. (2.12) into Eq. (2.13), along with Eq. (2.10) and Eq. (2.11), one derives
the Newton’s second law:

mi r̈i = Fi (2.14)

The reason why we introduce the Lagrangian is that the equation of motion that is hard
to write down directly from Newton’s second law can be derived from the Euler-Lagrange
equation Eq. (2.13).

The Hamiltonian H corresponds to the total energy E of the system:

H(r1, . . . ,rN ; ṙ1, . . . , ṙN ) = K(ṙ1, . . . , ṙN ) +U (r1, . . . ,rN ) (2.15)

It can be shown that the Hamiltonian and the Lagrangian are related by Legendre trans-
forms (Tuckerman pp.16 − 17). Usually we use the momenta instead of velocity as the
variables:

H(r1, . . . ,rN ;p1, . . . ,pN ) =
N∑
i=1

p2
i

2mi
+U (r1, . . . ,rN ) (2.16)

For a system with conservative forces, the equation of motion satisfies the conservation of
energy, i.e. dE/dt = 0 or dH/dt = 0.
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2.2. LAGRANGIAN FORMULATION

Taking the derivatives ofHwith respect to ri and pi , we derive the Hamiltonian’s equations
of motion:

∂H
∂ri

=
∂U
∂ri

= −Fi = −ṗi

∂H
∂pi

=
pi
mi

= ṙi

(2.17)

which reproduces the Newton’s second law and indicates the conservation of energy:

dH
dt

=
∑
i

(
∂H
∂ri

ṙi +
∂H
∂pi

ṗi

)
= 0 (2.18)

2.2.1 Generalized coordinates

In the above we used Cartesian coordinates {ri = (xi , yi , zi)}, corresponding to 3N values.
Here we introduce generalized coordinates {q1, . . . , q3N } which usually provide a more nat-
ural description of the particle locations. The generalized coordinates {q1, . . . , q3N } are
related to the Cartesian coordinates via a reversible function

qα = fα(r1, . . . ,rN ), α = 1, ...,3N (2.19)

The inverse of the transformation gives back the Cartesian coordinates:

ri = gi(q1, . . . , q3N ), i = 1, ...,N (2.20)

According to the chain rule,

ṙi =
3N∑
α=1

∂ri
∂qα

q̇α. (2.21)

Therefore the kinetic energy in the new coordinate is

K̃(q, q̇) =
1
2

3N∑
α=1

3N∑
β=1

 N∑
i=1

mi
∂ri
∂qα
· ∂ri
∂qβ

 q̇αq̇β
=

1
2

3N∑
α=1

3N∑
β=1

Gαβ(q1, . . . , q3N )q̇αq̇β

(2.22)

where Gαβ is a symmetric matrix called the mass metric matrix:

Gαβ(q1, . . . , q3N ) =
N∑
i=1

mi
∂ri
∂qα
· ∂ri
∂qβ

(2.23)

Now we can express the concepts we learned in Section 2.2 in the generalized coordinates.
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2.3. MORE ABOUT HAMILTONIAN

• Lagrangian:

L =
1
2

3N∑
α=1

3N∑
β=1

Gαβ(q1, . . . , q3N )q̇αq̇β −U (r1(q1, · · · ,q3N , · · · ,rN (q1, · · · ,q3N )) (2.24)

where U (r1(q1, · · · ,q3N , · · · ,rN (q1, · · · ,q3N )) is the potential energy as a function of
(q1, · · · ,q3N ).

• Euler-Lagrange equation:

d
dt

 3N∑
β=1

Gαβ q̇β

−
 3N∑
α=1

3N∑
β=1

∂Gαβ
∂qγ

q̇αq̇β −
∂U
∂qγ

 = 0 (2.25)

• Generalized momenta {p1, · · · ,p3N }:

pα =
∂L
∂q̇α

=
3N∑
β=1

Gαβ q̇β (2.26)

• Hamiltonian:

H =
1
2

3N∑
α=1

3N∑
β=1

G−1
αβpαpβ +U (r1(q1, · · · ,q3N , · · · ,rN (q1, · · · ,q3N )) (2.27)

where G−1 is the inverse of the mass-metric matrix G, and

G−1
αβ =

N∑
i=1

1
mi

∂qα
∂ri
·
∂qβ
∂ri

(2.28)

• Hamiltonian’s equations of motion:

q̇α =
∂H
∂pα

, ṗα = − ∂H
∂qα

(2.29)

2.3 More about Hamiltonian

2.3.1 Time evolution of a general function

The Poisson bracket between two functions f (x) and g(x) is defined as

{f (x), g(x)} =
3N∑
α

[
∂f (x)
∂qα

∂g(x)
∂pα

−
∂f (x)
∂pα

∂g(x)
∂qα

]
(2.30)
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2.3. MORE ABOUT HAMILTONIAN

where x = (q1, . . . , q3N ;p1, . . . ,p3N ) is the generalized vector.

The time evolution of a function f (x) is then decided by the Poisson bracket {f (x),H}:

df (x)
dt

=
3N∑
α=1

[
∂f (x)
∂qα

q̇α +
∂f (x)
∂pα

ṗα

]

=
3N∑
α=1

[
∂f (x)
∂qα

∂H
∂pα
−
∂f (x)
∂pα

∂H
∂qα

]
= {f (x),H}

(2.31)

If the Poisson bracket between an observable f (x) and the Hamiltonian H is zero, i.e.,
{f (x),H} = 0, then we say that f (x) is conserved.

2.3.2 Phase space incompressibility

The term ”incompressibility” in hydrodynamics (or fluid dynamics) means that there is
no source or sinks in the flow, i.e., ∇ · v(r) = 0. Consider the time derivative of the phase
vector x and define

η(x) = ẋ (2.32)

where we can consider η as a generalized velocity. η can be evaluated by

η(x) = (q̇1, . . . , q̇3N ; ṗ1, . . . , ṗ3N )

=
(
∂H
∂p1

, . . . ,
∂H
∂p3N

;−∂H
∂q1

, . . . ,− ∂H
∂q3N

)
(2.33)

We evaluate ∇x · η(x),

∇x · η(x) =
3N∑
α=1

[
∂q̇α
∂qα

+
∂ṗα
∂pα

]

=
3N∑
α=1

[
∂
∂qα

∂H
∂pα
− ∂
∂pα

∂H
∂qα

]

=
3N∑
α=1

[
∂2H

∂qα∂pα
− ∂2H
∂pα∂qα

]
= 0

(2.34)

Therefore the Hamiltonian’s equation of motion ensures the incompressibility condition
in the phase space.
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2.3. MORE ABOUT HAMILTONIAN

2.3.3 Symplectic structure

Eq. (2.33) can be rewritten in the following form

η(x) =
(
q̇
ṗ

)
=

(
0 I
−I 0

)∂H∂q
∂H
∂p

 =M
∂H
∂x

(2.35)

where M is a 6N × 6N matrix with the form

M =
(

0 I
−I 0

)
(2.36)

where 0 and I are 3N × 3N zero and identity matrices, respectively.

A dynamical system expressible in the form of Eq. (2.35) is said to possess a symplectic
structure.

Since the solution to the Hamiltonian’s equation of motion is unique for each initial con-
dition x(0), one could say that x(t) is a unique function of x(0). Define the Jacobian matrix
J(t) with elements

Jkl(t) =
∂xk(t)
∂xl(0)

, (2.37)

we have
M = J(t)TMJ(t) (2.38)

where J(t)T is the transpose of J(t). Eq. (2.38) is called the sympletic property.
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Lecture 3: Thermodynamics and Ensemble Theory

3.1 Basic concepts of thermodynamics

• Thermodynamic systems: a macroscopic system. A thermodynamic system can be

– isolated: there is no exchange of heat or material with surroundings;

– closed: there is heat but no material exchange with surroundings;

– open: there is both heat and material exchange with surroundings.

• Thermodynamic state: a thermodynamic state is characterized by a set of thermo-
dynamic parameters (or state parameters) such as the pressure P , volume V , tem-
perature T , and the number of moles n or the total mass M.

• Thermodynamic equilibrium: a system is in thermodynamic equilibrium if the
thermodynamic states does not change with time, i.e., the thermodynamic parame-
ters remain constant with time.

• Equation of state (EOS): Similar to the equation of motion (EOM), the EOS of a
system describes the relationship among the thermodynamic parameters at equilib-
rium. When one parameter changes, the other parameters will respond according
to the EOS to reach a new equilibrium.

– Example 1: When P ,V ,T and n are the fundamental thermodynamic parame-
ters, the general form of the EOS is

g(n,P ,V ,T ) = 0 (3.1)

– Example 2: EOS of an ideal gas

P V −nRT = 0 (3.2)

where R ≈ 8.31446 J ·mol−1 ·K−1 is the gas constant. (Note that this number in
the textbook is inaccurate.)

• Thermodynamic transformation: the system changes from one thermodynamic
state to another. A thermodynamic transformation can be
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3.2. LAWS OF THERMODYNAMICS

– reversible: the change is slow enough so that the system can evolve back to the
initial state along the same path.

– irreversible: the path of the transformation cannot be reversed.

• State function: a state function is any function f (n,P ,V ,T ) which only depends on
the initial and final states, but irrelevant to the transformation paths.

3.2 Laws of thermodynamics

• Zeroth law
If two thermodynamic systemsA and B are each in thermal equilibrium with a third
system C, then A and B are in thermal equilibrium with each other.

• First law
In any thermodynamic transformation, the change of the internal energy ∆E of a
system equals to the heat ∆Q it absorbs and the amount of work ∆W performed on
it:

∆E = ∆Q+∆W. (3.3)

Discussion:

– Both ∆Q and ∆W are not state functions.

– ∆E is a state function: ∆E = Ef − Ei (irrelevant of the path). For an isolated
system, the energy is conserved.

– In a reversible process, the changes of work and heat are

dWrev = −PdV +µdn
dQrev = CdT

(3.4)

where µ is called the chemical potential, and C is called the heat capacity. Note
that P is the internal pressure.

• Second law
In any thermodynamic transformation, the total entropy Stot of the universe must
either increase or remain the same: dStot ≥ 0.
Two equivalent statements: there exists no thermodynamic transformation

(1) whose sole effect is to extract a quantity of heat from a high-temperature source
and convert it entirely into work; or

(2) whose sole effect is to transfer heat from a cold source to a hot source.

• Third law
The entropy of a system at the absolute zero of temperature T = 0 is a universal
constant, which can be taken to be zero.
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3.3. ENSEMBLE THEORY

Discussion

In the first chapter, we studied the classical mechanics of individual particles (atoms,
molecules, etc.) in a microscopic picture. The thermodynamic concepts and laws in this
chapter are concerned with the macroscopic behaviors of a large number (∼ 1023) of the
microscopic particles.

In Chapter 1 we mentioned two practical difficulties of applying the Newton’s laws to the
particles directly: (1) the number of particles is enormous; and (2) the interactions (forces)
among the particles are complicated. After learning/reviewing the laws of thermodynam-
ics, another problem raises: the second law of thermodynamics decides the direction of
time, i.e., the direction in which the entropy S increases. But in the mechanical laws, the
”arrow” of time does not exist. The above paradox is known as Loschmidt’s paradox. The
reconciliation of this paradox relies on statistical mechanics.

3.3 Ensemble theory

There exist many microscopic configurations of a system that lead to the same macro-
scopic properties (e.g., P ,T ,V ,n,E), since the macroscopic properties are generally con-
nected to summations or averages of microscopic values. Therefore the macroscopic ob-
servables of a system are not sensitive to precise microscopic details. This leads to the
concept of ensemble.

• Ensemble: a collection of systems described by the same set of microscopic inter-
actions and sharing a common set of macroscopic properties.1 These systems have
distinguished microscopic states x = (q1, ...,q3N ;p1, ...,p3N ).

• Ensemble average: suppose a(x) is a microscopic phase space function that can be
used to calculate the macroscopic equilibrium observable A, then

Discrete case : A =
1
N

N∑
λ=1

a(xλ) ≡ ⟨a⟩,

Continuous case : A =
∫

dx a(x)f (x) ≡ ⟨a⟩,

(3.5)

where for discrete ensembles: N is the number of systems in the ensemble, and xλ
is the microscopic state of the λth system; and for continuous ensembles: f (x) is a
normalized distribution function of the systems.

1In the rest of the course, we will assume the systems in an ensemble are at equilibrium→ equilibrium
ensembles.
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3.4. TIME EVOLUTION OF ENSEMBLES

3.4 Time evolution of ensembles

Recall that the phase space is a 6N dimensional space, and a point in the phase space
corresponds to a phase space vector x = (q1, ...,q3N ;p1, ...,p3N ), where {qi}i=1,...,3N are gener-
alized coordinates and {pi}i=1,...,3N are the conjugate momenta. The Liouville’s theorem and
Liouville’s equation describe the time evolution of an ensemble in the phase space.

We first introduce two concepts: phase space volume element dx and phase space distri-
bution function (or ensemble distribution function) f (x, t).

• Phase space volume element: dx = (dq1, . . . ,dq3N ;dpq, . . . ,dp3N ) is a small volume
centered at x.

• Phase space distribution function: f (x, t) is the distribution of the systems in the
ensemble at point x and time t, which satisfies:

f (x, t) ≥ 0∫
dx f (x, t) = 1

(3.6)

Here we give the conclusions of how the above two values evolve with time, and the
derivations/proofs can be found in the Tuckerman book pp.63− 68.

• Liouville’s theorem
dx0 = dxt (3.7)

where x0 is the phase space vector at t = 0 and xt at time t. This theorem states that
even though the shape of the volume element can change with time, but the total
volume is conserved.

• Liouville’s equation
∂
∂t
f (x, t) = −{f (x, t),H(x, t)} (3.8)

where H(x, t) is the Hamiltonian, and {·, ·} is the Poisson bracket.

At equilibrium, ∂f /∂t = 0, therefore,

{f (x),H(x)} = 0. (3.9)

A general solution to Eq. (3.9) is that f is a function ofH (this can be proved straight-
forwardly), i.e.,

f (x) ∝ F (H(x)). (3.10)

Therefore one can define f (x) as

f (x) =
1
Z
F (H(x)), (3.11)

24



3.4. TIME EVOLUTION OF ENSEMBLES

where the normalization factor Z is called the partition function

Z =
∫

dx F (H(x)). (3.12)

The continuous ensemble average in Eq. (3.5) can also be written as

A = ⟨a(x)⟩ =
1
Z

∫
dx a(x)F (H(x)). (3.13)
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Lecture 4: Microcanonical Ensemble

In the previous lecture, we learned the concept of ensemble – a collection of systems de-
scribed by the same Hamiltonian with each system in a unique microscopic state at any given
instant in time. We also introduced three types of thermodynamic systems: isolated sys-
tems, closed systems and open systems. They correspond to three types of ensembles:
microcanonical ensembles, canonical ensembles and grand canonical ensembles. The
type of an ensemble is decided by fixing certain control variables, which are the macro-
scopic values of a thermodynamic systems (e.g. N,V ,P ,T ,E...). Below is the summary
of the three common ensembles (N -total number of particles, V -volume, E-total energy,
T -temperature, µ-chemical potential).

Ensemble Names Fixed Control Variables Thermodynamic systems
Microcanonical N,V ,E Isolated systems

Canonical N,V ,T Closed systems
Grand canonical µ,V ,T Open systems

Table 4.1: A summary of the three common types of ensembles.

Note that there are also other types of ensembles. For instance, in Gibbs ensembles, the
pressure P is fixed while V can vary. We will focus on the above three ensembles for this
course.

To understand the statistical properties of an ensemble, it is important to know the distri-
bution of the microstates. For a microcanonical ensemble, it is possible to figure out the
total number of systems, and the distribution can be straightforwardly calculated. We
use Ω(N,V ,E) to represent the total number of microstates.

For canonical ensembles and grand canonical ensembles, we will introduce the concept of
partition function, which has a similar role as Ω. We will leave this part for future lectures.
In fact, one can treat Ω(N,V ,E) as the partition function of the microcanonical ensemble.
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4.1. BOLTZMANN ENTROPY

4.1 Boltzmann Entropy

The Boltzmann entropy is defined as

S = kB lnΩ(N,V ,E) (4.1)

where kB ≈ 1.38× 10−23J ·K−1 is the Boltzmann’s constant.

Eq. (4.1) indicates that S is also a function of N,V and E, therefore

dS =
(
∂S
∂E

)
N,V

dE +
(
∂S
∂V

)
N,E

dV +
(
∂S
∂N

)
V ,E

dN (4.2)

Recall from the thermodynamics that

dE = dQrev + dWrev (4.3)

where dQrev is the heat that the system absorbed at a reversible process, and dWrev is the
work done to the system at a reversible process. We have

dQrev = T dS

dWrev = dWmech
rev + dW chem

rev

= −PdV +µdN

(4.4)

Therefore
dE = T dS − PdV +µdN (4.5)

and

dS =
1
T

dE +
P
T

dV −
µ

T
dN =

kB
Ω

dΩ. (4.6)

The relationships between the intensive properties T , P , µ and Ω are

1
T

=
kB
Ω

(
∂Ω
∂E

)
N,V

P =
kBT
Ω

(
∂Ω
∂V

)
N,E

µ = −kBT
Ω

(
∂Ω
∂N

)
V ,E

(4.7)

Eq. (4.7) conveys an important information: the thermal properties of a system is closely
related to the size of the ensemble it belongs to, or more precisely, the partition function
of the ensemble.
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4.2. Ω(N,V ,E) FOR THE MICROCANONICAL ENSEMBLE

4.2 Ω(N,V ,E) for the microcanonical ensemble

In order to calculate Ω(N,V ,E), we start from the equilibrium Liouville equation

{f (x),H(x)} = 0 (4.8)

where f (x) is the ensemble distribution function at phase vector x, H(x) is the Hamilto-
nian of the ensemble at x, and {. . . , . . . } is the Poisson bracket. Eq. (4.8) leads to f (x) =
F(H(x)).

For a microcanonical ensemble, the energy E is conserved, therefore

H(x) = E (4.9)

which means that F(H(x)) = 0 unless H(x) = E. Therefore

F(H(x)) =N δ(H(x)−E) (4.10)

where δ(. . . ) is the Dirac delta function (see Math Reviews), and N is the normalization
factor to ensure that

∫
dx F = 1.

For an ensemble in the continuous 6N dimensional phase space, Ω is the amount of space
available to the systems. However, due to the properties of Delta function, the space
that is available is actually a (6N − 1) dimensional hypersurface (only (6N − 1) degrees of
freedom). How do we evaluate the volume of this hypersurface?

A clever way to bypass evaluating the volume of a ”surface” is to consider a thin shell
between [E,E + ∆E], called the energy shell, where ∆E is a very small value, as shown in
Fig. 4.1. All points inside the energy shell should be equally weighted, and our goal is to

Figure 4.1: Energy shell in the phase space.

count the number of distinguished microstates inside the shell, i.e., Ω(N,V ,E). Heisen-
berg’s uncertainty principle tells us that ∆qi∆pi ≥ h/4π, where h is called the Planck’s
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4.2. Ω(N,V ,E) FOR THE MICROCANONICAL ENSEMBLE

constant. We can assume that points inside a cube within the volume ∆x ∼ h3N are indis-
tinguishable. Therefore, counting the number of distinguishable microstates is reduced
to counting how many ∆x ∼ h3N cubes that the shell contains:

Ω(N,V ,E) =
volume of the energy shell

h3N (4.11)

The volume of the shell can be approximated by the area of the hypersurface times the
thickness ∆E: ∆E

∫
dx δ(H−E).

The above derivation, however, is not enough. Because in quantum mechanical world, the
N particles are indistinguishable. But in the classical world, particles are distinguishable.
Therefore, there are N ! classical systems that will share the same microstates, where N !
comes from the number of permutations of N particles. To avoid overcounting, we need
to divide the above Ω by N !. The final form of Ω(N,V ,E) is thus

Ω(N,V ,E) =
∆E

h3NN !

∫
dx δ(H(x)−E) (4.12)
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4.3. EXAMPLE: THE CLASSICAL IDEAL GAS

Comments

1. The value of δ(H(x)−E) depends on the specific Hamiltonian.

2. The constant ∆E does not affect the statistical properties, since it cancels out in Eq.
(4.7).

4.3 Example: The Classical Ideal Gas

The Hamiltonian of the ideal gas in a container is

H(x) =
N∑
i=1

p2
i

2m
+Vwall(x)

Vwall(x) =

0, x ∈ container;
∞ x < container.

(4.13)

Suppose the volumn of the container is V , then Eq. (4.12) becomes

Ω(N,V ,E) =
∆E

h3NN !

∫
V

dq1 · · ·
∫
V

dqN

∫
dp1 · · ·

∫
dpN δ

 N∑
i=1

p2
i

2m
−E


=
∆EV N

h3NN !

∫
dp1 · · ·

∫
dpN δ

 N∑
i=1

p2
i

2m
−E


(4.14)

Let yi = pi/
√

2m, and dpi =
√

2m dyi , the integration becomes∫
dp1 · · ·

∫
dpN δ

 N∑
i=1

p2
i

2m
−E

 = (2m)3N/2
∫

dy1 · · ·
∫

dyN δ

 N∑
i=1

y2
i −E

 (4.15)

δ
(∑N

i=1 y2
i −E

)
defines a (3N − 1)-dimensional hypersphere with radius

√
E. We make a

coordinate transformation to the hyperspherical coordinates:∫
dp1 · · ·

∫
dp3N =

∫
dθ1 · · ·

∫
dθ3N−1︸                  ︷︷                  ︸

integration over angles

∫
dr r3N−1 (4.16)

where ∫
dθ1 · · ·

∫
dθ3N−1 =

2π3N/2

Γ (3N/2)
N∑
i=1

y2
i = r2

(4.17)
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4.3. EXAMPLE: THE CLASSICAL IDEAL GAS

Γ (x) is the Gamma function. Therefore the integral becomes

Ω(N,V ,E) =
∆EV N (2m)3N/2

h3NN !
π3N/2

Γ (3N/2)
E3N/2−1 (4.18)

In the above we used two properties of Delta function:

•
∫

dx f (x)δ(x − a) = f (a).

• δ(x2 − a2) = 1
2|a| [δ(x − a) + δ(x+ a)].
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Lecture 5: Canonical Ensemble I

In the last lecture, we discussed the microcanonical ensemble - a collection of isolated
systems that conserves (N,V ,E). In real life, however, it is nearly impossible to find a
truly isolated system (the whole universe could be an exception). Most systems in the ex-
perimental setups exchange energy or even particles with the surrounding environment.

In this lecture, we introduce another type of ensembles: canonical ensembles, which are
collections of systems that conserve (N,V ,T ) and exchange energy E with the surrounding
environment, as shown in Fig. 5.1.

Figure 5.1: A system in contact with the environment (thermal reservoir).

In Fig. 5.1, the system of interest is embedded in a large environment (or thermal reser-
voir, thermal bath), with E2 ≫ E1. The system has a fixed volume V1 and can only ex-
change heat with the environment. Both the system and environment are at equilibrium.
According to the first law of thermodynamics, T1 = T2 = T . This system obeys the laws of
canonical ensemble. The whole system (system + environment) is an isolated system and
obeys the laws of microcanonical ensemble.
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5.1. PARTITION FUNCTION

5.1 Partition function

In the previous lecture, we learned that the number of microstates of a microcanonical
ensemble Ω(N,V ,E) is the key to connect the microscopic distribution with the macro-
scopic thermal properties. For canonical and grand canonical ensembles, there exists a
more general concept called the partition function, which plays the same role as Ω(N,V ,E)
in microcanonical ensembles. We use Q(N,V ,T ) to represent the partition function for
canonical ensembles.

One can interpret the partition function as the normalization factor for the ensemble
distribution:

f (x) =
F(x)

Q(N,V ,T )
, (5.1)

where f (x) satisfies f (x) ≥ 0 and
∫

dx f (x) = 1. Then the partition function can be evalu-
ated by

Q(N,V ,T ) =
∫

dx F(x). (5.2)

Again, one can multiply F(x) with a constant and f (x) will remain unchanged.

In the following, we evaluate F(x) and hence Q(N,V ,T ). We start from what we know
already: (system + environment) belongs to a microcanonical ensemble. (Note: this strategy
of starting from the whole system and trace the environment out is a very important trick
and we will run into it again!)

We use the index 1 for the system, 2 for the environment, while the total system properties
have no indices.

Before we jump to the derivation of F(x), let’s look at the basic properties of this bi-
partitioned problem at equilibrium. Suppose the total system is bipartitioned into System-
1 and System-2.

• Phase space: The dimension of the phase space of system-1 is 6N1 and that of
system-2 is 6N2, then the dimension of the total system is 6(N1 +N2), with

x =
(
q1

1, · · · ,q
1
3N1

,q2
1, · · · ,q

2
3N2

; p1
1, · · · ,p

1
3N1

,p2
1, · · · ,p

2
3N2

)
. (5.3)

• Distribution function: if f (x) = f (x1,x2) is the distribution of the microstates in
the whole system, then the distribution function f1(x1) in System-1 is evaluated by
integrating out System-2 from f (x), vice versa.

f1(x1) =
∫

dx2 f (x1,x2)

f2(x2) =
∫

dx1 f (x1,x2)
(5.4)
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5.1. PARTITION FUNCTION

5.1.1 Derivation of Q(N,V ,E)

We will mainly follow the steps in the Tuckerman book (pp.135 − 138). However, there
are several places in the book that are not mathematically rigid, and we will make some
modifications in the following derivation. Suppose the coupling between the system and
environment can be neglected, then the total Hamiltonian is

H(x) =H1(x1) +H2(x2) (5.5)

Since the total system is an isolated system, H(x) = E is constant, and

Ω(N,V ,E) ∝
∫

dx δ(H(x)−E)

=
∫

dx1dx2 δ(H1(x1) +H2(x2)−E)

=
∫

dx1dx2 F(x1,x2)

(5.6)

where F(x1,x2) is an unnormalized distribution of the total system depending on x1 and
x2. To get the (unnormalized) distribution function that only depends on x1, we integrate
x2 out:

F(x1) =
∫

dx2 F(x1,x2)

=
∫

dx2 δ(H1(x1) +H2(x2)−E)
(5.7)

In the previous lecture we saw that the thermal properties depends on the logarithm of
the partition function, so in the following we work with lnF(x1):

lnF(x1) = ln
∫

dx2 δ(H1(x1) +H2(x2)−E). (5.8)

Since E2 ≫ E1, H2(x2)≫H1(x1), and |H1(x1)/E| ≪ 1. Therefore we can do Taylor expan-
sion around H1(x1)/E = 0. Using δ(ax) = δ(x)/ |a|,

lnF(x1) = ln
∫

dx2
1
|E|
δ(
H1(x1)
E

+
H2(x2)
E

− 1)

≈ 1
|E|

ln
∫

dx2 δ(0 +
H2(x2)
E

− 1)

+
1
|E|

(
∂

∂(H1(x1)/E)
ln

∫
dx2 δ(

H1(x1)
E

+
H2(x2)
E

− 1)
)∣∣∣∣∣∣H1(x1)/E=0

H1(x1)
E

= ln
∫

dx2 δ(H2(x2)−E)

+
(

∂
∂H1(x1)

ln
∫

dx2 δ(H1(x1) +H2(x2)−E)
)∣∣∣∣∣∣H1(x1)/E=0

H1(x1).

(5.9)
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5.1. PARTITION FUNCTION

Due to the δ-function δ(H1(x1)+H2(x2)−E), where the total energy E is constant, we have

H1(x1) = E −H2(x2),
dH1(x1) = −dH2(x2).

(5.10)

Eq. (5.9) can be rewritten as

lnF(x1) = ln
∫

dx2 δ(H2(x2)−E)

−
(

∂
∂H2(x2)

ln
∫

dx2 δ(H1(x1) +H2(x2)−E)
)∣∣∣∣∣∣H1(x1)=0

H1(x1)

= ln
∫

dx2 δ(H2(x2)−E)−
(

∂
∂H2(x2)

ln
∫

dx2 δ(H2(x2)−E)
)
H1(x1).

(5.11)

We notice that both two terms in Eq. (5.11) has
∫

dx2 δ(H2(x2) − E), which is the form
of the partition function for the microcanonical ensemble. In fact, because the environ-
ment (System-2) is much larger than the system, we can assume that the energy of the
environment E2 fluctuates inside a small energy shell around E, then∫

dx2 δ(H2(x2)−E) ∝Ω2(N2,V2,E2) (5.12)

Recall the definition of the Boltzmann entropy in the last lecture

S2(N2,V2,E2) = kB lnΩ2(N2,V2,E2). (5.13)

Eq. (5.11) becomes

lnF(x1) =
S2(N2,V2,E2)

kB
−H1(x1)

∂
∂E2

S2(N2,V2,E2)
kB

=
S2(N2,V2,E2)

kB
− H1(x1)

kBT
,

(5.14)

where we used ∂S2/∂E2 = T2 and T1 = T2 = T . Again, since the environment is large, S2
can also be taken as a constant, and

F(x1) ∝ e−H1(x1)/kBT . (5.15)

As we have already discussed in the microcanonical ensemble part, there are two coeffi-
cients come from the quantum effect:

1. The resolution of the phase space due to Heisenberg’s uncertainty principle→ 1
h3N1

.

2. The indistinguishable property of particles→ 1
N1!
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5.1. PARTITION FUNCTION

For the sake of simplicity, we drop the index ’1’ and

F(x) =
1

N !h3N e
−H(x)/kBT = CN e

−H(x)/kBT (5.16)

The normalized distribution function is

f (x) =
CN e

−H(x)/kBT

Q(N,V ,T )
(5.17)

where Q(N,V ,T ) is the partition function of the canonical ensemble:

Q(N,V ,T ) = CN

∫
dx e−βH(x) (5.18)

5.1.2 Evaluating a thermal observable

Now we have the distribution function f (x), we can evaluate any thermal observables by
B(N,V ,T ) = ⟨b(x)⟩, where b(x) is the microscopic function corresponding to B:

B(N,V ,T ) = ⟨b(x)⟩ =
∫

dx f (x)b(x). (5.19)

Eq. (5.19) connects a microscopic property b(x) with a macroscopic property B. Substi-
tuting Eq. (5.17) into Eq. (5.19), we derive the formula of thermal observables under the
canonical statistics:

B(N,V ,T ) =
CN

∫
b(x)e−H(x)/kBT

Q(N,V ,T )
=

∫
b(x)e−H(x)/kBT∫

dx e−βH(x)
, (5.20)

where the factor CN canceled out.

Example: energy evaluation

E = ⟨H(x)⟩ =

∫
H(x)e−H(x)/kBT∫

dx e−βH(x)

= − 1
Q(N,V ,T )

∂Q(N,V ,T )
∂β

= − ∂
∂β

lnQ(N,V ,T ).

(5.21)

We see that E has a simpler form which relies on the partial derivative of lnQ(N,V ,T ).
In fact, we can also evaluate other common thermal properties (such as S and P ) from
lnQ(N,V ,T ), avoiding the integration. However, Eq. (5.19) is still useful as the general
form to evaluate any thermal observables. In the next lecture, we will see how to relate
the common thermal properties to lnQ(N,V ,T ).

36



Lecture 6: Canonical Ensemble II

6.1 Thermal properties

In the last lecture, we introduced the general form to evaluate a thermal property under
canonical statistics Eq. (5.19). In this section, we start the discussion from the thermody-
namic point of view, and connect the macroscopic properties to the microscopic partition
function.

For the microcanonical ensemble with (N,V ,E) as control variables, we introduced rela-
tionships of state functions as

dS =
1
T

dE +
P
T

dV −
µ

T
dN,

or dE = T dS − PdV +µdN.
(6.1)

Since for canonical ensemble, we prefer to use (N,V ,T ) as control variables. In order to
move T to the variables in Eq. (6.1), we perform Legrendre transformation:

d(T S) = T dS + SdT ,
d(E − T S) = T dS − PdV +µdN − (T dS + SdT )

= −SdT − PdV +µdN.
(6.2)

Therefore the value (E−T S) is a state function that uses (N,V ,T ) as variables, and we call
it Helmholtz free energy:

A(N,V ,T ) = E(N,V ,S)− T S(N,V ,E) , (6.3)

and

dA = −SdT − P dV +µdN. (6.4)

Comments
According to the second law of thermodynamics, the total entropy of the universe (or an
isolated system) must increase or remain the same: Stot ≥ 0. Since a microcanonical en-
semble is composed of isolated systems, the entropy S(N,V ,E) is a natural value to de-
termine whether a process is thermodynamically favorable. The Helmholtz free energy
A(N,V ,T ) for the canonical ensemble plays the same role:
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6.2. ENERGY FLUCTUATION

A thermodynamic process in the canonical ensemble is favorable if A(N,V ,T ) decreases.

(Decreasing A(N,V ,T ) corresponds to increasing S or decreasing E.)

Aside from being the indicator of thermodynamical processes, A(N,V ,T ) is also directly
related to the canonical partition function Q(N,V ,T ):

A(N,V ,T ) = −kBT lnQ(N,V ,T ) = −1
β

lnQ(N,V ,T ) (6.5)

where β = 1/kBT . The proof of Eq. (6.5) can be found in the Tuckerman book p.139.

With Eq. (6.5), we can connect the macroscopic thermal properties to the microscopic
partition function:

µ =
(
∂A
∂N

)
V ,T

= −kBT
(
∂ lnQ
∂N

)
V ,T

, P = −
(
∂A
∂V

)
N,T

= kBT
(
∂ lnQ
∂V

)
N,T

,

S = −
(
∂A
∂T

)
N,V

= kB lnQ+ kBT
(
∂ lnQ
∂T

)
N,V

, E = A+ T S = −
(
∂ lnQ
∂β

)
N,V

.

(6.6)

One can evaluate other thermal properties (such as heat capacity CV ) in the similar way.

CV =
(
∂E
∂T

)
N,V

= kBβ
2∂

2 lnQ
∂β2.

(6.7)

It seems that Eq. (6.5) comes from intuition. However, we can validate it by proving that
Eq. (6.5) is the solution to Eq. (6.3). Knowing E = −∂ lnQ/∂β from last lecture, Eq. (6.3)
becomes

A+ T S −E = A− T ∂A
∂T

+
∂ lnQ
∂β

= 0. (6.8)

Replacing T with T = 1/kBβ, Eq. (6.8) becomes

A+ β
∂A
∂β

+
∂ lnQ
∂β

= 0. (6.9)

The easiest way to solve Eq. (6.9) is to substitute Eq. (6.5) into it and prove that it’s the
solution. We provide a general way to solve a differential equation with the form of Eq.
(6.9) in the end of this lecture, in case you are interested.

6.2 Energy fluctuation

The fluctuation of a thermal property B is defined as

∆B =
√
⟨(b(x)−B)2⟩ =

√
⟨b(x)2⟩ −B2, (6.10)
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6.3. EXAMPLES

where B = ⟨b(x)⟩. We examine the thermal fluctuation of the energy

∆E =
√
⟨H(x)2⟩ −E2. (6.11)

First we need to calculate ⟨H(x)2⟩ by

⟨H(x)2⟩ =

∫
dx H(x)2e−βH(x)∫

dx e−βH(x)
=

1
Q
∂2Q
∂β2 . (6.12)

Therefore

(∆E)2 = ⟨H(x)2⟩ −E2 =
1
Q
∂2Q
∂β2 −

1
Q2

(
∂Q
∂β

)2

=
∂2 lnQ
∂β2 . (6.13)

Since CV = kBβ2(∂2Q/∂β2), we get

∆E =
√
kBT 2CV . (6.14)

Discussion
If a thermal property B is proportional to the number of particles N , then B is extensive; if
a thermal property B is irrelevant to the total particle numberN , then B is intensive. Some
useful rules:

extensive
intensive

→ extensive,
extensive
extensive

→ intensive,
intensive
intensive

→ intensive. (6.15)

Therefore, lnQ = −βA(N,V ,T ) is an extensive property, and ∂n lnQ/∂βn is extensive →
CV is extensive, which leads to

∆E ∝
√
N. (6.16)

The relative energy fluctuation is

∆E
E

=

√
kBT 2CV
E

∝
√
N
N

=
1
√
N
. (6.17)

At the thermodynamic limit (TDL) where N → ∞, ∆E
E → 0. Therefore, at the TDL, the

canonical ensemble becomes equivalent to the microcanonical ensemble.

6.3 Examples

6.3.1 Ideal gas

We first consider the simplest case: a free particle of mass m in a one-dimensional box of
length L, with Hamiltonian

H =
p2

2m
+V (r), where V (r) =

0, 0 < r < L;
∞, r ≤ 0 or r ≥ L.

(6.18)
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The above potential V (r) guarantees that the particle is only in the box (0 < r < L). In the
following, we drop the potential V (r) and instead confine the integration of r in the box.
The canonical partition function is

Q =
1
h

∫ L

0
dr

∫ ∞
−∞

dp e−βH =
1
h

∫ L

0
dr

∫ ∞
−∞

dp e−βp
2/2m. (6.19)

Using the Gaussian integral ∫ ∞
−∞
e−αx

2
=
√
π/α, (6.20)

we derive the final form of Q:

Q = L

√
2πm
βh2 = L

√
2πmkBT

h2 . (6.21)

Define the thermal wavelength of a particle λ =
√
βh2/2πm, then

Q =
L
λ
. (6.22)

Eq. (6.22) shows that the partition function of a particle in a box equal the ratio of the box
length L to the thermal wavelength of the particle λ.

Next we look at N free particles in a three dimensional box with volume V = L3. The
Hamiltonian is

H =
N∑
i=1

p2
i

2m
+

N∑
i=1

V (ri), where V (ri) =

0, r ∈ box ;
∞, r < box .

(6.23)

The partition function is given by

Q(N,V ,T ) =
1

N !h3N

∫
box

dN r
∫

dNp exp

−β N∑
i=1

p2
i

2m

 , (6.24)

where
∫

dNp =
∫

dp1 · · ·
∫

dpN . Since there are no interactions among the particles, we can
safely write Eq. (6.24) as

Q(N,V ,T ) =
1
N !

[
1
h3

∫
box

dr
∫

dp exp
(
−β p2

2m

)]N
, (6.25)

where the partition function of N free particles reduced to the product of N partition
functions of a single particle times a factor 1/N !. Now we only need to calculate the
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6.3. EXAMPLES

partition function of a single particle in a three-dimensional box.

1
h3

∫
box

dr
∫

dp exp
(
−β p2

2m

)
=

1
h3

∫ L

0
drx

∫ L

0
dry

∫ L

0
drz

∫ ∞
−∞

dpx e
− βp

2
x

2m

∫ ∞
−∞

dpy e
−
βp2
y

2m

∫ ∞
−∞

dpz e
− βp

2
z

2m

=
[
1
h

∫ L

0
dr

∫ ∞
−∞

dp e−
βp2

2m

]3

=
(L
λ

)3
.

(6.26)

Therefore the partition function of N free particles in a three-dimensional box is

Q(N,V ,T ) =
V N

N !λ3N . (6.27)

Knowing the partition function, we can evaluate thermal properties using the equations
in Section 6.1, for example,

E = −∂ lnQ
∂β

=
3
2
NkBT ;

P = kBT
∂ lnQ
∂V

=
NkBT
V

;

CV =
∂E
∂T

=
3
2
NkB.

(6.28)

6.3.2 Harmonic Oscillator (HO)

Again we start with the simplest form: a one-dimensional HO of mass m and frequency
ω. The Hamiltonian is

H =
p2

2m
+

1
2
mω2x2. (6.29)

The canonical partition function is

Q(β) =
1
h

∫ ∞
−∞

dx
∫ ∞
−∞

dp e
−β

(
p2

2m+ 1
2mω

2x2
)

=
1
h

∫ ∞
−∞

dx e−βmω
2x2/2

∫ ∞
−∞

dp e−βp
2/2m

=
1
h

√
2πm
β

√
2π
mω2

=
2π
βhω

=
1
βℏω

.

(6.30)
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where ℏ = h/2π.

For N indistinguishable three-dimensional harmonic oscillators, the partition function
can be easily evaluated: Q(N,β) = 1/[N !(βℏω)3N ].

6.3.3 Discrete energy spectrum

Now suppose we have a system of M energy levels with energy εi and degeneracy gi . The
degeneracy gi is the number of states that correspond to energy εi . Fig. 6.1 provides an
example to understand the this setup.

Figure 6.1: Example of a discrete
energy spectrum. In this spectrum,
there are three energy levels: the
first level has energy ε1 and degen-
eracy g1 = 3, the second level has
energy ε2 and degeneracy g2 = 1
and the third level has energy ε3
and degeneracy g3 = 2.

The general form of the canonical partition function of an M energy level system is

Q =
M∑
i=1

gie
−βεi (6.31)

Note that here we ignored the pre-factor 1
h3NN ! as in the previous integrals. In fact, since

for the canonical ensemble, the particle number N is fixed, this pre-factor does not affect
the distribution function and hence the values of thermal properties or

The expectation value of the energy is

E(β) = −∂ lnQ
∂β

=
∑M
i=1 gie

−βεiεi
Q

=
M∑
i=1

εifi , (6.32)

where fi is the distribution function over the energy spectrum

fi =
gie
−βεi

Q
. (6.33)
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6.4. NOSÉ-HOOVER THERMOSTAT

6.4 Nosé-Hoover thermostat

The last part of this lecture is to introduce a numerical tool to simulate molecular dynam-
ics in the canonical ensemble. Let’s recall the definition of the canonical ensemble from
last lecture: the canonical ensemble can be seen as a subsystem embedded in a thermal
bath (environment), as shown in Fig. 6.2. The thermal bath is used to make sure that T
for the system is constant.

Figure 6.2: A system in contact with the environment (thermal reservoir).

Idealy (or physically) the bath should contain a large number of particles to serve as the
reservoir. However we can make up a bath with a single pseudo-particle that is ”power-
ful” enough to control the temperature of the system (like a Maxwell daemon). We use s
and ps as the generalized coordinates of this particle, where s is a dimensionless variable,
and ps has units of energy × time. Now the phase space of the total system has dimension
2dN + 2 for a d-dimensional system. The total system has a microcanonical distribution.

The temperature T corresponds to the average behavior of the kinetic energy of the sys-
tem. In order to control the temperature, we rescale the kinetic energy. A perfect rescaling
factor is the dimensionless s. We also add the kinetic energy and potential energy of this
bath particle, which gives us the formulation of the Nosé Hamiltonian:

HN =
N∑
i=1

p2
i

2mis2
+U (r1, . . . ,rN ) +

p2
s

2Ms
+ gkBT lns, (6.34)

where the first two terms are the Hamiltonian of the system with kinetic energy rescaled,
and the last two terms are the Hamiltonian of the bath particle. The generalized mass of
the bath particleMs has units of energy × time2 to make sure that the Hamiltonian has
units of energy1. The parameter g is determined by ensuring the canonical distribution
of the system.

1In the Tuckermann book, Q is used instead of Ms, we are using Ms here so we don’t mix it with the
canonical partition function symbol.
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6.4. NOSÉ-HOOVER THERMOSTAT

The microcanonical partition function is

Ω =
∫

dN rdNp dsdps δ (HN −E) (6.35)

where E is the energy of the enlarged system. We make the following substitution

p̃i =
pi
s
, (6.36)

then HN becomes

HN =
N∑
i=1

p̃2
i

2mi
+U (r1, . . . ,rN ) +

p2
s

2Ms
+ gkBT lns

=H(r, p̃) +
p2
s

2Ms
+ gkBT lns.

(6.37)

The partition function becomes

Ω =
∫

dN rdN p̃ dsdps s
dN δ

(
H(r, p̃) +

p2
s

2Ms
+ gkBT lns −E

)
. (6.38)

We first integrate over s. Let f (s) =H(r, p̃) + p2
s /2Ms + gkBT lns −E, we integrate∫

ds sdNδ(f (s)). (6.39)

Knowing the trick

δ (f (s)) =
δ(s − s0)
|f ′(s0)|

(6.40)

where f (s0) = 0, we get

s0 = exp
[
(E −H(r, p̃)− p2

s /2Ms)/gkBT
]
,

1
|f ′(s0)|

=
s0

gkBT
.

(6.41)

Therefore ∫
ds sdNδ(f (s)) =

∫
ds sdN

δ(s − s0)
|f ′(s0)|

=
sdN0

|f ′(s0)|
=
sdN+1

0

gkBT
.

(6.42)

The partition function is

Ω =
1

gkBT

∫
dN rdN p̃dps s

dN+1
0

=
1

gkBT

∫
dN rdN p̃dps exp

(
(dN + 1)

(
E −H(r, p̃)− p2

s /2Ms

)
/gkBT

)
.

(6.43)
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Next we integrate with ps:

Ω =
e(dN+1)E/gkBT

gkBT

∫
dN rdN p̃exp

(
−dN + 1

g
βH(r, p̃)

)
×
∫

dps exp
(
− dN + 1

2MsgkBT
p2
s

)
=
e(dN+1)E/gkBT

gkBT

√
2MsπgkBT

dN + 1

∫
dN rdN p̃exp

(
−dN + 1

g
βH(r, p̃)

)
.

(6.44)

If we choose g = dN + 1, then Eq. (6.44) has the canonical partition function form:

Ω =
eE/kBT

√
2MsπkBT

(dN + 1)kBT

∫
dN rdN p̃exp

(
−dN + 1

g
βH(r, p̃)

)
. (6.45)

Therefore, we derived a canonical partition function form with a prefactor due to the
bath-particle.

Now we proved that the Nosé Hamiltonian provides the microcanonical distribution of
the total system (system + bath) and a canonical distribution of the system, we can simu-
late the 2dN + 2 coordinates according to the Hamilton’s equations of motion:

ṙi =
∂HN
∂pi

=
pi
mis2

ṗi = −∂HN
∂ri

= Fi

ṡ =
∂HN
∂ps

=
ps
Ms

ṗs = −∂HN
∂s

=
1
s

 N∑
i=1

p2
i

mis2
− gkBT

 .
(6.46)

A more convenient expression is to change the variables:

p̃i =
pi
s
, p̃s =

ps
s
, ,dt̃ =

dt
s

(6.47)

and another set of equations can be derived from Eq. (6.46). Note that the system and the
bath are coupled in Eq. (6.46), so one has to time evolve all the 2dN + 2 variables to get
the correct behavior of the system (2dN -dimension phase space).
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6.4. NOSÉ-HOOVER THERMOSTAT

Figure 6.3: Phase space and distribution functions obtained by integrating the
Nosé–Hoover equations for harmonic oscillator. (a) shows the phase space p vs. x in-
dependent of η and pη , (b) shows the phase space for pη = ±0.001; (c) and (d) show distri-
butions f (p) and f (x) obtained from the simulation (solid line) compared with the correct
canonical distributions (dashed line).

6.4.1 Nosé-Hoover equations

In 1985, Hoover introduced a reformulation of the Nosé equations Eq. (6.46), with the
non-canonical change of variables2

p̃i =
pi
s
, dt̃ =

dt
s
,

1
s

ds
dt̃

=
dη
dt̃
, p̃s = pη , g = dN. (6.48)

2Non-canonical change of variables means the new variables introduce a non-Hamiltonian system and
do not preserve the Hamilton’s equation of motion. It is hard to substitute s in Eq. (6.34) with the above
change of variables.
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6.4. NOSÉ-HOOVER THERMOSTAT

The equations of motion then becomes

ṙi =
pi
mi

ṗi = Fi −
pη
Ms

pi

η̇ =
pη
Ms

ṗη =
N∑
i=1

p2
i

mi
− gkBT .

(6.49)

6.4.2 Discussion on ergodicity

The term ergodicity is an important concept for many numerical methods related to en-
semble simulations. If a method is ergodic, then it visits all the microstates in the ensemble
(i.e., all the points in the phase space that the ensemble allows). Fig. 6.3 shows an example
of simulating a harmonic oscillator with Nosé-Hoover equations. From Fig. 6.3 (Tucker-
mann Fig. 4.10) we see that the Nosé-Hoover equations are not ergodic, thus do no provide
the correct distribution functions.

One way to fix the non-ergodicity of the Nosé-Hoover equations is to use the method
called Nosé-Hoover chains (Tuckermann Chapter 4.10), and we will leave this to the stu-
dents to read.

Appendix Solving Eq. (6.9)

We solve y(x) from the following differential equation, with g(x) given.

y + x
dy
dx

+
dg(x)

dx
= 0. (6.50)

We integrate both sides w.r.t. x:∫
dx y +

∫
dx x

dy
dx

+
∫

dx
dg(x)

dx

=
∫

dx y +
∫

xdy +
∫

dg(x)

=
∫

dx y +
(
xy −

∫
dx y

)
+ g(x)

= xy + g(x) = 0.

(6.51)

where we used integration by parts for
∫
xdy. The solution to Eq. (6.51) is

y = −
g(x)
x
. (6.52)
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Lecture 7: Real Gases and Liquids

In the previous examples, we studied systems of particles without particle-particle iterac-
tions (non-interaction systems). These systems are considered simple and can usually be
solved analytically. However, systems without interactions are boring, because they can
only have one phase (e.g. the ideal gas can only exist in the gas phase).

In this lecture, we study systems where the particle-particle interaction exists. These
complicated systems can undergo phase transitions between different phases (e.g. solid,
liquid, gas, ...). We assume that the systems we study have canonical distribution.

7.1 Spatial distribution function

In this section, we study the spatial distribution functions of particles, which will be
useful to know the relative distribution of particles, the coordination numbers, and to
evaluate thermal properties. In most realistic systems, the two-body interaction is the
leading interacting term, thus we emphasize the pair-correlation function and the radial
distribution function.

7.1.1 Joint probability distribution

Before we start, we review the basics of joint probability distribution. Suppose f (x1,x2)
is a distribution of variable x1 and variable x2, and

∫
dx1

∫
dx2 f (x1,x2) = 1. The value of

f (x1,x2)dx1dx2 denotes the probability of the first variable being in the small volume dx1
around x1 while the second variable being in the small volume dx2 around x2.

We can derive the distribution of x1 by

f (x1) =
∫

dx2 f (x1,x2). (7.1)

Now lets consider the distribution function of N variables f (x1, . . . ,xN ). The distribution
function of the first k ≤N variables (x1, . . . ,xk) is

f (x1, . . . ,xk) =
∫

dxk+1 . . .dxN f (x1, . . . ,xk ,xk+1, . . . ,xN ). (7.2)
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7.1. SPATIAL DISTRIBUTION FUNCTION

7.1.2 Multi-particle correlation function

The general form of a Hamiltonian of a system of N indistinguishable particles is

H =
N∑
i=1

p2
i

2m
+U (r1, . . . ,rN ) (7.3)

The kinetic term is universal for any systems, and the many-body interaction is included
in the potential term U (r1, . . . ,rN ).

The canonical partition function is

Q(N,V ,T ) =
1

N !h3N

∫
dNp

∫
dN r e−βH

=
1

N !h3N

∫
dNp exp

−β N∑
i=1

p2
i

2m

×∫
dN r e−βU (r1,...,rN )

=
1

N !h3N

(
2πm
β

) 3N
2
∫

dN r e−βU (r1,...,rN ).

(7.4)

In the last lecture, we defined the thermal wavelength λ =
√
βh2/2πm, and the partition

function can be expressed as

Q(N,V ,T ) =
1

N !λ3N

∫
dN r e−βU (r1,...,rN ). (7.5)

We introduce the configurational partition function:

Z(N,V ,T ) =
∫

dN r exp[−βU (r1, . . . ,rN )], (7.6)

then Q(N,V ,T ) = Z(N,V ,T )/(N !λ3N ). We have divided the partition function into the
contributions from the kinetic term 1/λ3N ) and the potential term Z(N,V ,T ).

In the following, we will focus on phase space functions that only depends on the posi-
tions. Let a(x) = a(r1, . . . ,rN ) be such a function, then

⟨a⟩ =
1
Q

[
1

N !h3N

∫
dNp

∫
dN r a(r1, . . . ,rN )e−βH

]
=

1
Q

1
N !h3N

∫
dNp exp

−β N∑
i=1

p2
i

2m

×∫
dN r a(r1, . . . ,rN )e−βU (r1,...,rN )

=
1
Z

∫
dN r a(r1, . . . ,rN )e−βU (r1,...,rN ).

(7.7)

The spatial distribution function of the N particles is

P (N )(r1, . . . ,rN ) =
1
Z
e−βU (r1,...,rN ). (7.8)
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7.1. SPATIAL DISTRIBUTION FUNCTION

One could interpret P (N )(r1, . . . ,rN )dr1 · · ·drN as the probability of finding one particle in
a small volume element dr1 around r1, one particle in a small volume element dr2 around
r2, ..., and one particle in a small volume element drN around rN . An example is shown
in Fig. 7.1 Now suppose we only care about the distribution of the first k ≤ N particles,

Figure 7.1: Interpretation of P (N )(r1, . . . ,rN )dr1 · · ·drN with N = 3 in a two-dimensional
space. P (3)(r1,r2),r3)dr1dr2dr3 is the probability of each volume element (dri) containing
one particle.

where we can get probability function by integrating the rest of the N −k coordinates out:

P (k)(r1, . . . ,rk)dr1 · · ·rk =
[∫

drk+1 · · ·drN P
(N )(r1, . . . ,rN )

]
dr1 · · ·drk . (7.9)

Since the particles are indistringuishable, we can define the distribution density of k par-
ticles as

ρ(k)(r1, . . . ,rk) = k!
(
N
k

)
P (k)(r1, . . . ,rk) (7.10)

where the prefactor k!
(N
k

)
= N !/(N − k)! comes from the indistinguishability of the parti-

cles:
(N
k

)
is the number of combinations of choosing k particles from the N particles, and

k! is the number of permutations among these k particles.

Suppose the particles are evenly distributed in the space, and ρ = N/V is the number
density, then we can define the k-particle correlation function as

g(k)(r1, . . . ,rk) =
ρ(k)(r1, . . . ,rk)

ρk
(7.11)

Note that when (r1, . . . ,rk) is fixed,∫
drk+1 · · ·drN =

∫
dN r′

k∏
i=1

δ(r′i − ri). (7.12)
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7.1. SPATIAL DISTRIBUTION FUNCTION

where dN r′ = dr′1 · · ·dr′N . Therefore we can rewrite g(k)(r1, . . . ,rk) as

g(k)(r1, . . . ,rk) =
N !

(N − k)!ρk
1
Z

∫
dN r′ e−βU (r′1,...,r

′
N )

k∏
i=1

δ(r′i − ri)

=
N !

(N − k)!ρk

〈 k∏
i=1

δ(r′i − ri)
〉

r′1,...,r
′
N

(7.13)

When k = 1, ρ1(r) means the probability density of having one particle at the position r,
and since the system is homogeneous, we have

ρ1(r) =
N
V

= ρ, (7.14)

therefore g1(r) = ρ1(r)/ρ = 1. Therefore, g1(r) provides the information of the single par-
ticle distribution, and when g1(r) = 1, the system is homogeneous.

7.1.3 Radial distribution function

The pair-wise (or two-body) interaction plays an important role in determining the physics
of a realistic system. In this subsection, we consider the situation where k = 2.

Following Eq. (7.13), the pair correlation function is

g(2)(r1,r2) =
N (N − 1)

ρ2 ⟨δ(r′1 − r1)δ(r′2 − r2)⟩r′1,...,r′N . (7.15)

In a homogeneous system, the g(2)(r1,r2) should not depend on the absolute positions r1
and r2. In fact, g(2)(r1,r2) should only depend on the distance between the two particles.

We introduce the center-of-mass coordinate with the following substitution:

R =
1
2

(r1 + r2), r = r1 − r2 (7.16)

Then we can rewrite Eq. (7.15) as a function of r = |r|:

g(r) =
N − 1
4πρr2 ⟨δ(r − r ′)⟩r ′ ,θ,φ,R′ ,r′3,...r′N (7.17)

where 1/4πr2 comes from changing to the spherical coordinate for r, i.e., (r,θ,φ). g(r) is
called the radial distribution function1.

Picking one particle as the center, g(r) denotes the likelihood of finding another particle
at the distance r from the center particle, and

1We will save our time from the derivation, which can be found in Tuckerman pp.154− 155.
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7.1. SPATIAL DISTRIBUTION FUNCTION

ρg(r) = average density of particles at distance r given that a tagged
particle is at the origin.

Integrating ρg(r) over the space we should find exactly N − 1 particles,∫ ∞
0

4πr2 ρg(r) dr =N − 1. (7.18)

Example 1: simple liquid structure2

First we see a simple atomic liquid and it’s radial distribution function, as in Fig. 7.2. The
particles have the so called van der Waals diameter σ . The particles can be seen as hard
spheres, and the potential is simply:

V (r) =

∞, r ≤ σ,
0, r > σ .

(7.19)

Figure 7.2: A simple liquid structure (left) and the corresponding radial distribution func-
tion g(r) (left).

Example 2: Lennard-Jones potential

The Lennard-Jones potential has the form

V (r) = 4ϵ
[(σ
r

)12
−
(σ
r

)6
]
, (7.20)

where ϵ is the depth of the well and when r = σ , the potential is zero.
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7.2. THERMODYNAMIC QUANTITIES FROM THE SPATIAL DISTRIBUTION
FUNCTION

Figure 7.3: (Tuckerman Fig. 4.2) (a) Lennard-Jones potential with σ = 3.405Å and ϵ =
119.8K . (b) The radial distribution funtion g(r).

Fig. 7.3 shows the shape of the Lennard-Jones potential and the radial distribution func-
tion g(r).3

Observations

1. The first (and highest) peak of g(r) is close to the well of the Lennard-Jones potential,
the second peak corresponds to the second layer of particle, and so on.

2. As the temperature is raised, g(r) becomes flatter. Recall that temperature is related
to the kinetic energy. When the kinetic energy becomes large enough, the potential
energy becomes negligible, and we get the ideal gas.

3. The integration of ρg(r) up to the first peak gives the coordination number

N1 = 4πρ
∫ rpeak

0
r2g(r)dr (7.21)

7.2 Thermodynamic quantities from the spatial distribution function

In this section, we show the application of spatial distribution functions in evaluating
thermodynamic quantities.

We start from the energy

E = ⟨H⟩ = ⟨K(p1, . . . ,pN )⟩+ ⟨U (r1, . . . ,rN )⟩ (7.22)

2Figures from the book Introduction to Modern Statistical Mechanics by David Chandler.
3V (r) shown in this figure from Tuckerman is shifted compared to Eq. (7.18).
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7.2. THERMODYNAMIC QUANTITIES FROM THE SPATIAL DISTRIBUTION
FUNCTION

The integration of the first term is the kinetic energy ⟨K⟩ = 3
2NkBT ; since the potential is

a function of positions, we can use Eq. (7.7) to derive:

⟨U⟩ =
1
Z

∫
dN r U (r1, . . . ,rN )e−βU (r1,...,rN ) = − 1

Z
∂Z
∂β
. (7.23)

Now let’s consider a pair potential

Upair =
N∑
i=1

N∑
j>i

u(|ri − rj |). (7.24)

The expectation value is

⟨Upair⟩ =
1
Z

N∑
i=1

N∑
j>i

∫
dN r u(|ri − rj |)e−βUpair (7.25)

Since Upair is homogeneous, the integration in Eq. (7.25) is equivalent to replacing the
N (N − 1)/2 pairs of (i, j) with (1,2):

⟨Upair⟩ =
1
Z

N∑
i=1

N∑
j>i

∫
dN r u(|r1 − r2|)e−βUpair

=
N (N − 1)

2Z

∫
dN r u(|r1 − r2|)e−βUpair .

(7.26)

Since u(|r1 − r2|) only depends on r1 and r2, we can integrate the rest of position vectors
first:

⟨Upair⟩ =
N (N − 1)

2Z

∫
dr1dr2u(|r1 − r2|)

[∫
dr3 · · ·drN e

−βUpair

]
. (7.27)

Substituting the expression of g(2)(r1,r2) in Eq. (7.15) into Eq. (7.27), we get

⟨Upair⟩ =
ρ2

2

∫
dr1dr2 u(|r1 − r2|)g(2)(r1,r2) (7.28)

Significance of Eq. (7.28)

1. If a Hamiltonian only contains two-particle interactions, one only needs the infor-
mation of the two-particle correlation function g(2)(r1,r2), and the computation in-
volves the integration of only two position variables (i.e., r1 and r2.

2. One could generalize Eq. (7.28) to the k-particle interaction case:

⟨U (k)⟩ =
ρk

k!

∫
dr1 · · ·drk u(r1, . . . ,rk)g

(k)(r1, . . . ,rk) (7.29)
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7.3. PERTURBATION THEORY

We can again rewrite Eq. (7.28) with radial distribution function g(r), and the trick is
to first transform to the center-of-mass coordinate, and then transform to the spherical
coordinate,

⟨Upair⟩ =
Nρ

2

∫ ∞
0

dr4πr2u(r)g(r) = 2πNρ
∫ ∞

0
dr r2u(r)g(r). (7.30)

With the similar procedure (Tuckerman pp.162 − 165), one could evaluate the pressure
from

P = kBT
∂
∂V

lnQ(N,V ,T ) =
kBT

Z(N,V ,T )
∂Z(N,V ,T )

∂V
(7.31)

and arrive at

P V =NkBT −
2πρN

3

∫ ∞
0

dr r3 du
dr
g(r), (7.32)

which can be seen as the state function of a two-particle interaction Hamiltonian. The
first term is from the kinetic energy, and the second term is from the pair potential.

Comments

The evaluation of a Hamiltonian in quantum chemistry methods follows the similar idea.
The equivalence to the k-particle correlation functions in quantum chemistry is the k-
particle reduced density matrix. As you take more and more courses, you will find the
similarities of some approaches. When you see a completely new problem, hopefully the
basic courses you learn will provide you insights to find potential solutions.

7.3 Perturbation theory

In the previous sections, we simplified the computation of quantities related to the many-
particle interaction by introducing the multi-particle correlation function. However, it is
still complicated to evaluate the quantities related to the potential part.

In this section, we introduce a very useful tool: the perturbation theory (PT). Taylor ex-
pansion is one example of perturbation methods, where we keep the leading terms and
discard the higher orders. Similarly, we can write the potential energy as

U =U0 +U1 (7.33)

where U0 is the leading term (also easier to compute), and U1 is considered as a small
perturbation.

Let’s look at the configurational partition function

Z(N,V ,T ) =
∫

dN re−βU =
∫

dN re−β(U0+U1) =
∫

dN re−βU0e−βU1 (7.34)
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We define the first order of the configurational partition function

Z0(N,V ,T ) =
∫

dN re−βU0 , (7.35)

then

Z(N,V ,T ) =
Z0(N,V ,T )
Z0(N,V ,T )

∫
dN re−βU0e−βU1

= Z0(N,V ,T )⟨e−βU1⟩0,
(7.36)

where ⟨· · · ⟩0 is the expectation value under the first order configurational distribution
function, e.g.,

⟨a⟩0 =
∫

dN r a(rN )e−βU0 , (7.37)

where we used rN to represent (r1, . . . ,rN ) for a concise expression.

Since U1 is a small perturbation, we can expand e−βU1 with Taylor expansion,

⟨e−βU1⟩0 = 1− β⟨U1⟩0 +
β2

2!
β⟨U2

1 ⟩0 − · · ·

=
∞∑
l=1

(−β)l

l!
⟨U l

1⟩0.
(7.38)

To show how perturbation theory works, let’s keep the first order:

⟨e−βU1⟩0 ≈ 1− β⟨U1⟩0. (7.39)

We evaluate the Helmholtz free energy, which is the key to evaluate other thermodynamic
quantities.

A = −1
β

lnQ = −1
β

ln
Z

N !λ3N

= −1
β

ln
Z0

N !λ3N −
1
β

ln⟨e−βU1⟩0.
(7.40)

Let

A = A(0) +A(1), (7.41)

then the zeroth order of A is simply

A(0) = −1
β

ln
Z0

N !λ3N . (7.42)
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7.3. PERTURBATION THEORY

For the perturbation part

A(1) = −1
β

ln⟨e−βU1⟩0

≈ −1
β

ln(1− β⟨U1⟩0)
(7.43)

Using the Taylor expansion of ln(1− x) ≈ −x, we get

A(1) = ⟨U1⟩0 + · · · . (7.44)

A more rigorous way to find the whole expansion is provided in the Tuckerman book
pp.167− 170 called cumulant expansion, which gives

A(1) = ⟨U1⟩0 +
∞∑
l=2

(−β)l−1

l!
⟨(U1 − ⟨U1⟩0)l⟩. (7.45)

For a pair-wise potential, following Eq. (7.30),

⟨U1⟩0 = 2πNρ
∫ ∞

0
d rr2u1(r)g0(r), (7.46)

where g0(r) is the zeroth order of the radial distribution function.

Example: van der Waals equation of state (EOS)

We consider the zeroth order of the potential energy to be the hard sphere potential

u(r) =

∞, r ≤ σ,
0, r > σ .

, (7.47)

and

g0(r) ≈ e−βr0(r) =

0, r ≤ σ,
1, r > σ .

= θ(r − σ ). (7.48)

where θ(r − σ ) is called a step function.

We evaluate Z0 first

Z0 =
∫

dN re−βU0

=
∫

dN re−β
∑N
j>i=1u0(|ri−rj |)

=
∫

dN r
N∏

j>i=1

e−βu0(|ri−rj |).

(7.49)
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7.3. PERTURBATION THEORY

Figure 7.4: (Tuckerman Fig. 4.8) Isotherms of the van der Waals equation of state for four
different temperatures.

If |ri − rj | < σ for any (i, j) pair, then the integral is zero, therefore, we should integrate all
rN in the available volume:

Z0 =
∫
D(Vavail)

dN r× 1 = V N
avail

=
(
V − 2Nπσ3

3

)N
= (V −Nb)N .

(7.50)

Next we evaluate A(1),

A(1) = 2πNρ
∫ ∞

0
dr r2u1(r)g0(r)

= 2πNρ
∫ ∞

0
dr r2u1(r)θ(r − σ )

= 2πNρ
∫ ∞
σ

dr r2u1(r)

≡ −aNρ,

(7.51)

where

a = −2π
∫ ∞
σ

dr r2u1(r) > 0 (7.52)

is a parameter depending on the specific potential form. Therefore,

A ≈ −1
β

ln
[
(V −Nb)N

N !λ3

]
− aN

2

V
. (7.53)
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The pressure is

P = −
(
∂A
∂V

)
N,T

=
NkBT
V −Nb

− aN
2

V 2 , (7.54)

which turns into

(P +
aN 2

V 2 )(V −Nb) =NkBT = nRT , (7.55)

where R is the Avogadro’s number, and n is the number of mols. We see that the van der
Waals EOS modified the potential and volume in the ideal gase EOS based on the real
potential.

Finally we see how this U1 brings phase transition by analyzing a isotherm plot of the van
der Waals equation of state in Fig. 7.4.

The critical temperature Tc is a important value in which:

1. T < Tc: liquid-gas phase transition exists.

2. T > Tc: there is only one phase (gas phase for this example).
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Lecture 8: Grand Canonical Ensemble

In the previous lectures, we discussed the microcanonical ensemble (or the NVE ensem-
ble) and canonical ensemble (or the NVT ensemble). One should expect other types of
ensembles depending on the specific problem of interest. Here is a list of common ensem-
bles:

• Microcanonical ensemble - NVE

• Canonical ensemble - NVT

• Grand canonical ensemble - µV T

• Isoenthalpic-isobaric ensemble - NPH (H = E + P V is the enthalpy.)

• Isothermal-isobaric ensemble - NP T

The key property of an ensemble is the partition function, which connects the distribution
of microstates and the thermodynamic quantities. In the following, we will discuss the
grand canonical ensemble, which is the last classical ensemble we will cover in this class.

8.1 Partition function of the grand canonical ensemble

A direct derivation of the grand canonical partition function Z(µ,V ,T ) can be found in
Tuckerman pp.264−268, here we introduce an intuitive approach to get the expression of
Z(µ,V ,T ).

In the previous lectures, we found that the natural thermodynamic quantities for the
microcanonical ensemble and the canonical ensemble are,

microcanonical ensemble - entropy S(N,V ,E) = kB lnΩ,

canonical ensemble - Helmholtz free energy A(N,V ,T ) = E − T S = −1
β

lnQ.
(8.1)

We can assume that the natural quantity1, say Ã(µ,V ,T ), for the grand canonical ensemble
has a similar connection to Z(µ,V ,T ) as Eq. (8.1).

1One could prove that Ã = −P V using Euler’s theorem (Tuckerman 6.2).
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First we find out the expression of Ã(µ,V ,T ) with Legendre transformation. Starting from
the Helmholtz free energy

dA = −SdT − PdV +µdN, (8.2)

we replace µdN with Ndµ:

dÃ = d(A−µN ) = −SdT − PdV −Ndµ. (8.3)

where Ã = A−µN = E − T S −µN , and

Ã = −1
β

lnZ. (8.4)

Given a fixed particle number Ni , we have

−1
β

lnZ(µ,V ,T ;Ni) = A(Ni ,V ,T )−µNi = −1
β

lnQ(Ni ,V ,T )−µNi , (8.5)

which gives

Z(µ,V ,T ;Ni) = eβµNiQ(Ni ,V ,T ). (8.6)

Since the particle number Ni can fluctuate from 0 to∞, we need to sum over all possible
Ni values

Z(µ,V ,T ) =
∞∑

Ni=0

Z(µ,V ,T ;Ni). (8.7)

Thus we get the final expression of Z(µ,V ,T ):

Z(µ,V ,T ) =
∞∑
N=0

eβµNQ(N,V ,T ) , (8.8)

where Q(N,V ,T ) is the canonical partition function

Q(N,V ,T ) =
1

N !h3N

∫
dx e−βH(x,N ). (8.9)
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8.2 Thermodynamic quantities

⟨N ⟩(µ,V ,T ) = −
(
∂Ã
∂µ

)
V ,T

=
1
β

(
∂ lnZ
∂µ

)
V ,T

=
1
Z

∞∑
N=0

NeβµNQ,

E(µ,V ,T ) = −
(
∂ lnZ
∂β

)
µ,V

=
1
Z

∞∑
N=0

[
−
(
∂ lnQ
∂β

)
N,V

−µN
]
eβµNQ

P (µ,V ,T ) = −
(
∂Ã
∂V

)
µ,T

=
1
Z

∞∑
N=0

1
β

(
∂ lnQ
∂V

)
N,T

eβµNQ,

S(µ,V ,T ) = −
(
∂Ã
∂T

)
µ,V

= kB lnZ +
1
Z

∞∑
N=0

1
β

(
∂ lnQ
∂T

)
N,V

eβµNQ.

(8.10)

where ⟨N ⟩ denotes the average of the particle numbers.

Recall that for the canonical ensemble, we had

E(N,V ,T ) = −
(
∂ lnQ
∂β

)
N,V

,

P (N,V ,T ) =
1
β

(
∂ lnQ
∂V

)
N,T

,

S(N,V ,T ) = kB lnQ+
1
β

(
∂ lnQ
∂T

)
N,V

.

(8.11)

We can see the connection between quantities of canonical ensembles and quantities of
grand canonical ensembles.

Example: ideal gas

For ideal gas, we know that the canonical partition function is

Q(N,V ,T ) =
1
N !

( V
λ3

)N
. (8.12)

where λ =
√
βh2/2πm is the thermal wavelength. Therefore the grand canonical partition

function is

Z(µ,V ,T ) =
∞∑
N=0

eβµN
1
N !

( V
λ3

)N
=
∞∑
N=0

1
N !

(
V eβµ

λ3

)N
= eV e

βµ/λ3
, (8.13)

where we used ex =
∑∞
k=0x

k/k!.
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8.3. PARTICLE NUMBER FLUCTUATION

We evaluate the thermal quantities in Eq. (8.10).

⟨N ⟩ =
1
β

(
∂ lnZ
∂µ

)
V ,T

= P V /kBT (8.14)

Therefore we get the equation of state for ideal gas:

P V = ⟨N ⟩kBT . (8.15)

We can also evaluate the energy

E = − ∂
∂β

lnZ =
3
2
⟨N ⟩kBT . (8.16)

The entropy is

S =
5
2
⟨N ⟩kB + ⟨N ⟩kB ln

(
V

⟨N ⟩λ3

)
. (8.17)

8.3 Particle number fluctuation

The particle number fluctuation is defined as

∆N =
√
⟨N 2⟩ − ⟨N ⟩2. (8.18)

We will skip the calculation of ∆N (see Tuckerman Chapter 6.6) and give the conclusion
here

∆N ∝
√
⟨N ⟩

∆N
⟨N ⟩
∝ 1
√
⟨N ⟩

.
(8.19)

Therefore, at thermodynamic limit, where ⟨N ⟩ → ∞, the grand canonical ensemble is
equivalent to the canonical ensemble and the microcanonical ensemble.
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Lecture 9: Monte Carlo

The Monte Carlo methods are introduced as sampling techniques to reproduce certain dis-
tributions or perform integrations. As a warm-up, we see an example of evaluating the
area of a circle with random sampling.

Example: area of a circle

Suppose we do not know the formula of the area of a circle, but we know the formula of
the area of a square. We can set up the following experiment (Fig. 9.1): prepare a square
with side length 2r, and fit the circle with radius r into it; then we randomly throwN balls
into the square, and the position where a ball lands is uniformly distributed; we count the
number of balls that fall into the circle Nc (pink dots in Fig. 9.1), and the area of the circle
is approximated by

Area of the circle ≈ 4r2Nc
N
. (9.1)

We can also evaluate the value of π ≈ 4Nc/N .

Figure 9.1: Evaluating the area of a circle by random sampling.
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9.1. CALCULATING OBSERVABLES WITH RANDOM SAMPLING

9.1 Calculating observables with random sampling

One essential task of the Monte Carlo methods in statistical mechanics is to evaluate the
expectation values of physical observables at equilibrium, with the general formula

⟨a⟩ =
∫

dx a(x)f (x), (9.2)

where x is an n-dimensional vector, a(x) is the value of the observable at x, and f (x) is the
probability distribution function satisfying

f (x) ≥ 0,∫
dx f (x) = 1.

(9.3)

The integration in Eq. (9.2) is usually expensive to evaluate, and the numerical integration
methods can sometimes perform poorly depending on the shape of f (x).

The random sampling approach provides an efficient and accurate way to estimate Eq.
(9.2), described as following: randomly sample M points from the distribution f (x):
{x1, ...,xM}, then Eq. (9.2) can be estimated by

⟨a⟩ =
∫

dx a(x)f (x) ≈ 1
M

M∑
i=1

a(xi) = ā. (9.4)

Note that on the right hand side of Eq. (9.4), we do not have f (xi), because f (x) is already
encoded in the process of sampling {x1, ...,xM}.

The law of large numbers

The law of large numbers guarantees that as M→∞, the random sampling result becomes
exact: ∫

dx a(x)f (x) M→∞==
1
M

M∑
i=1

a(xi). (9.5)

or ⟨a⟩ M→∞== ā.

Central limit theorem

The central limit theorem (CLT)1 describes the behavior of the mean of a set of randomly
sampled data. Suppose now we have N sets of random variables drawn from the distri-

1The derivation can be found in Tuckerman 7.2.
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9.2. MARKOV CHAIN MONTE CARLO (MCMC)

bution f (x) with different means of a(x):

Set 1: {x1,i , ...,x1,M} → ā1

· · ·
Set N: {xN,i , ...,xN,M} → āN

Then no matter what f (x) is, the means ā1, . . . , āN tend to display a normal distribution

g(ā) =
1

σ
√

2π
e−

1
2

( ā−µ
σ

)2

(9.6)

with

µ = ⟨a⟩

σ =
σa√
M
.

(9.7)

where σa is the standard deviation of a(x) under the distribution of f (x).

The central limit theorem leads to the law of large numbers.

9.2 Markov chain Monte Carlo (MCMC)

This section provides an algorithm to draw samples from any distribution functions and
evaluate observables. For common distribution functions, such as the uniform distri-
bution and the normal distribution, they can be simply generated by a module from pro-
gramming packages. For instance, with Python, one could call numpy.random.uniform()
to draw one or multiple samples from a uniform distribution, or numpy.random.normal()
for a normal distribution. But what if the distribution is arbitrary?

In this section, we introduce an acceptance-rejection procedure to generate a sequence of
samples x1 → x2 → ·· · → xM , called a Markov chain. xi → xj means that xj is generated
based on xi . We first give the algorithm to generate a Markov Chain, called the Metropolis
algorithm, see Algorithm 1. Then we prove that the samples generated from this algo-
rithm display the correct probability distribution.

9.2.1 Metropolis algorithm

We define the following important concepts in the algorithm:

• Candidate-generating probability

T (y|x) is a rule of generating a trial (proposed move) to y from x. T (y|x) does not
depend on the distribution f (x), but depends on the nature of x. For instance, if x
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9.2. MARKOV CHAIN MONTE CARLO (MCMC)

denotes a spatial position, then jumping to a closer point is easier than jumping to a
farther point. T (xj |xi) satisfies ∫

dyT (y|x) = 1. (9.8)

For many cases, we have T (y|x) = T (x|y).

• Acceptance ratio

r(y|x) =
T (y|x)f (x)
T (x|y)f (y)

. (9.9)

Note that r(y|x) can be greater than 1. If T (y|x) = T (x|y), then we simply have r(y|x) =
f (y)/f (x).

• Acceptance probability

A(y|x) = min[1, r(y|x)]. (9.10)

• Transition probability

R(y|x) = A(y|x)T (y|x). (9.11)

R(y|x) depends on both the distribution f (x) and the nature of x.

• Detailed balance

R(y|x)f (x) = R(y|x)f (x). (9.12)

The detailed balance states that at equilibrium, each elementary process is at equi-
librium, and the transitions are reversible.

Note: the rejection step is important to fulfill ergodicity.

9.2.2 Proof of the correct distribution

Let πM(x) be the probability distribution generated by the Metropolis algorithm, where
M is the number of samples. We prove that

lim
M→∞

πM(x) = f (x) (9.13)

We use the mathematical induction:

• Since x0 is a single point, we can say that it is under any distribution.
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9.2. MARKOV CHAIN MONTE CARLO (MCMC)

Algorithm 1 Metropolis Algorithm
Input: f (x), T (y|x), number of samples M.

Generate an arbitrary starting point x0
i = 0
while i <M − 1 do

Evaluate the observable at xi : ai = a(xi).
Pick the next trial point xnew. ▷ Explained later.
Calculate the acceptance ratio r(xnew|xi) = T (xi |xnew)f (xnew)

T (xnew|xi )f (xi )
.

if r(xnew|xi) ≥ 1 then
Accept the move and xi+1 = xnew.

else
Generate a random number ξ from the uniform distribution between [0,1).
if r(xnew|xi) > ξ then

Accept the move and xi+1 = xnew.
else

Reject the move and xi+1 = xi . ▷ xi+1 is a copy of xi
end if

end if
i = i + 1

end while
Evaluate the approximated expectation value ā =

∑M
i=1 ai .

Output: {x0, ...,xM−1}, ā.

• We assume πk(x) = f (x), and prove that πk+1(x) = f (x). The probability distribution
of a point x is composed of two parts: (1) probability of transition from another
point y to x; (2) probability of getting rejected to move from x to another point y.

p1 =
∫
A(x|y)T (x|y)πk(y)dy =

∫
A(y|x)T (y|x)πk(x)dy

p2 =
∫

[1−A(y|x)]T (y|x)πk(x)dy
(9.14)

where the second equal sign for p1 is due to the detailed balance. Therefore

πk+1(x) = (1) + (2) = πk(x) = f (x) (9.15)

• Therefore the Markov chain drawn with the Metropolis has the correct distribution.

9.2.3 Picking the next trial point

We discuss how to pick the next trial point. Since the Markov Chain Monte Carlo method
is based on detailed balance, one usually chooses a small change at each step.
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9.2. MARKOV CHAIN MONTE CARLO (MCMC)

In the following, we assume T (x|y) has the following uniform form

T (x|y) =

 1
∆
, |x − y| < ∆/2,

0, otherwise.
(9.16)

which leads to T (x|y) = T (y|x).

For an N -particle d-dimensional homogeneous system, the procedure is

• Choose a step size ∆.

• Generate a uniform random integer n ∈ [1,N ] as the index of the chosen particle.

• Generate d uniform random real numbers {ξ1, ...,ξd} ∈ [−0.5,0.5].

• Move the position of the nth particle:

rn,α→ rn,α +
1
√
d
ξα∆, α = 1, ...,d. (9.17)

9.2.4 Discussion

The Monte Carlo methods form a big family, and there are so many more aspects to be
included in order to improve the performance of the MC code, for instance

• Convergence. The error is proportional to 1/
√
M.

• Parallelization. Once could start with many different x0 values, and perform MC
simulations parallelly. The final result will be the mean of the results from all the
MC simulations.

• Warm-up. To make sure that the MC result is not biased due to the initial value x0,
one usually discards the first several values (∼ 10), which are called the warm-up
steps.

• Time correlation. Since a new MC sample is generated from the last one, therefore
the samples are not fully independent. The real error is generally larger than the er-
ror calculated from all the samples. One can use the batching (or blocking) strategy
to evaluate the correct error.
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Lecture 10: Quantum Gases

10.1 Basics of quantum mechanics

As the word quantum suggests, when going from classical to quantum, one moves from a
continuous picture to a quantized picture.∫

dx→
∑
v

(10.1)

In the following, we will introduce/review the basic concepts in quantum mechanics in
this quantized picture.

Hamiltonian

We learned that the classical Hamiltonian is the key to (1) guide the time evolution of
microstates via the Hamilton’s EOM and to (2) provide the statistical behavior via the
partition functions. The quantum Hamiltonian plays similar roles and has the same signif-
icance as the classical one - an operator related to the total energy of the system.

Ĥ = K̂ + V̂ , (10.2)

where K̂ is the kinetic energy operator, and V̂ is the potential energy operator. The hat
sign is used to denote a quantum operator. Any observable has a corresponding quantum
operator, e.g., the position operator r̂ and the momentum operator p̂.

Quantum states

Another important concept is the quantum state, which can be represented by a ket |ψ⟩,
whose complex conjugate transpose is ⟨ψ| - called a bra. A quantum state can be seen as
an analog to the microstate. One main difference compared to a classical microstate is
that a quantum state can be a superposition of other quantum states

|Ψ ⟩ =
∑
v

cv |ψv⟩, (10.3)
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10.2. QUANTUM STATISTICAL MECHANICS

where {|ψi⟩} is called a basis set, and {ci} are the linear combination coefficients. On the
contrary, a classical system can only be at one microstate at a time.

The overlap of two quantum states is evaluated by ⟨ψ|φ⟩. If a state |ψ⟩ is normalized, then
⟨ψ|ψ⟩ = 1; if two states |ψ⟩ and |φ⟩ are orthogonal to each other, then ⟨ψ|φ⟩ = 0.

Eigenstates and eigen-energies

For a given Hamiltonian Ĥ , there exists a set of multi-particle quantum states {|ψv⟩} that
satisfy

Ĥ |ψv⟩ = Ev |ψv⟩, (10.4)

where {|ψv⟩} are called the eigenstates of the Hamiltonian, and {Ev} are the corresponding
eigen-energies. The set {|ψv⟩} forms an orthonormal basis set1 for the Hilbert space of the
Ĥ , and

Ĥ =
∑
v

Ev |ψv⟩⟨ψv |. (10.5)

Expectation values

The expectation value of a quantum operator Ô at state |Ψ ⟩ is evaluate by

⟨Ψ |Ô|Ψ ⟩. (10.6)

e.g., Ev = ⟨ψv |Ĥ |ψv⟩.

The trace of an operator can be evaluated by

Tr[Ô] =
∑
v

⟨ψv |Ô|ψv⟩, (10.7)

where {|ψv⟩} is an orthonormal basis set, such as the eigenstates of the Hamiltonian.

10.2 Quantum statistical mechanics

Canonical ensemble

We start from the canonical quantum ensemble, and provide the following comparison
between classical and quantum pictures.

1Orthonormal: ⟨ψv |ψw⟩ = δvw.
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Classical Quantum

Distribution function f (x) = e−βH∫
dx e−βH

Density matrix ρ̂ = e−βĤ

Tr[e−βĤ ]

Partition function Q(N,V ,T ) = c
∫

dx e−βH Q = Tr[e−βĤ ]

Thermal average ⟨A(x)⟩ =
∫

dx f (x)A(x)∫
dx f (x)

⟨Â⟩ = Tr[ρ̂Â]

Time evolution ∂f
∂t = {H, f } ∂ρ̂

∂t = −i[Ĥ, ρ̂] = −i(Ĥρ̂ − ρ̂Ĥ)

In the above table, the density matrix ρ̂ is a new concept. It plays the same role as the
distribution function f (x) - telling the probability distribution of the quantum states.

If the eigen-energies {Ev} and eigenstates {|ψv⟩} of the Hamiltonian are known, we can
rewrite the above quantities by

ρ̂ =
1
Q

∑
v

e−βEv |ψv⟩⟨ψv |

Q = Tr[e−βĤ ] =
∑
v

⟨ψv |e−βĤ |ψv⟩ =
∑
v

e−βEv

⟨Â⟩ = Tr[ρ̂Â] =
1
Q

∑
v

⟨ψv |Âe−βĤ |ψv⟩ =
∑
v e
−βEv⟨ψv |Â|ψv⟩∑

v e
−βEv

.

(10.8)

Grand canonical ensemble

For the grand canonical ensemble, we need to consider the fluctuation of the particle
number, and the corresponding statistical quantities are

Density matrix: ρ̂ =
e−β(Ĥ−µN̂ )

Tr[e−β(Ĥ−µN̂ )]

Partition function: Z = Tr[e−β(Ĥ−µN̂ )]

Thermal average: ⟨Â⟩ = Tr[ρ̂Â]

(10.9)

where N̂ is the particle number operator. When rewriting the trace with summation, one
needs to consider the summation of all possible particle numbers, from 0 to the maximum
possible number Nmax.

10.3 Ideal gas of indistinguishable quantum particles

In this section, we will derive the distributions of real particles, bosons and fermions, in a
non-interacting picture. Examples of bosons and fermions: photons and gluons are bosons,
while electrons and protons are fermions. We will also learn the corresponding statistical
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10.3. IDEAL GAS OF INDISTINGUISHABLE QUANTUM PARTICLES

distributions: the Bose-Einstein distribution for bosons, and the Fermi-Dirac distribution for
fermions. We will then go to the classical limit and derive the Boltzman distribution.

We start from the discussion of the properties of bosons and fermions.

10.3.1 Occupation numbers

Bosons are particles with integer spins (1, 2, . . . ), and fermions with odd half-integer spins
(1/2,3/2, . . . ). This leads to different parity symmetries2 and thus different occupation
patterns: there can be an arbitrary number of bosons on a single-particle state, while no two
fermions can occupy the same single-particle state3 Note that the term single-particle state
doesn’t mean that only one particle can occupy this state; rather it describes a state of one
particle. In chemistry, we call a single-particle state an orbital. We illustrate the above
difference in an example of putting two particles in two single-particle states, shown in
Fig. 10.1. In Fig. 10.1, bosons can have three different arrangements, while fermions only
have one valid arrangement due to the Pauli exclusion principle.

(a) Possible configurations of two bosons. (b) Possible configurations of two fermions.

Figure 10.1: Possible configurations of putting two particles onto two single-particle
states. (a) there are three configurations for bosons; (b) there is only one configuration
for fermions.

We call an arrangement of occupations a multi-particle state, or a configuration |ψ⟩. Note
that we use E for energies of multi-particle states, and ε for energies of single-particle
states. Suppose the occupation number of level-εj is nj , then we can simply use the occu-
pation numbers to specify a configuration:

configuration |ψv⟩ : (nv1,n
v
2, . . . ,n

v
j , . . . ). (10.10)

The total particle number and total energy of |ψv⟩ are

Nv =
∑
j

nvj ,

Ev =
∑
j

εjn
v
j .

(10.11)

2A result from quantum field theory. We won’t discuss the parity here.
3This is called the Pauli exclusion principle for fermions.
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In the following, we will derive the corresponding distributions under the grand canonical
ensemble. As the particle number is large enough, the different ensembles are equivalent.

10.3.2 Bosons: Bose-Einstein Distribution

Figure 10.2: Bose-Einstein distribution (choosing µ = 1). The dashed lines are non-
physical, corresponding to zero occupations.

For a multi-particle system, the partition funciton is

Z =
∑
v

e−β(Ev−µNv) (10.12)

where we sum over all possible configurations |ψv⟩ : (nv1,n
v
2, . . . ,n

v
j , . . . ) ∈ [0,∞).

For bosons, Eq. (10.12) can be rewritten as

Z =
∞∑

{n1,n2,... }=0

exp

−β∑
j

(εj −µ)nj


=

∞∑
{n1,n2,... }=0

∏
j

exp
[
−β(εj −µ)nj

]

=
∏
j


∞∑
nj=0

exp[−β(εj −µ)nj]


=
∏
j

1

1− e−β(εj−µ)
.

(10.13)
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We evaluate the average occupation number on level-εj

⟨nj⟩ =

∑
v nje

−β(Ev−µNv)

Z

= −1
β

∂Z/∂(εj)

Z

= −1
β
∂ lnZ
∂εj

,

(10.14)

which leads to the Bose-Einstein distribution

⟨nj⟩B.E. =
1

eβ(εj−µ) − 1
(10.15)

where B.E. stands for Bose-Einstein.

The plot of Eq. (10.15) is shown in Fig. 10.2. Eq. (10.15) diverges at εj = µ. Only when
ε > µ, the distribution is physical. One could see that as the temperature T decreases (β
increases), the distribution at ε→ µ goes to infinity, which means all the particles tends to
occupy the lowest possible state ε = µ. This leads to the famous Bose-Einstein condensation
(BEC)4, which is believed to be the mechanism for superfluidity (zero viscosity and zero
entropy). There are many videos online of the superfluid helium, look them up if you are
curious about superfluidity!

10.3.3 Fermions: Fermi-Dirac distribution

We start from the same partition function

Z =
∑
v

e−β(Ev−µNv). (10.16)

For fermions, the possible occupation numbers are 0 and 1. Therefore Eq. (10.16) can be
rewritten as

Z =
1∑

{n1,n2,... }=0

exp

−β∑
j

(εj −µ)nj


=

1∑
{n1,n2,... }=0

∏
j

exp
[
−β(εj −µ)nj

]

=
∏
j


1∑

nj=0

exp[−β(εj −µ)nj]


=
∏
j

(
1 + e−β(εj−µ)

)
.

(10.17)

4One of your classmates will talk more about BEC in the final presentation!
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The average occupation number of level-εj is again evaluated by

⟨nj⟩ = −1
β
∂ lnZ
∂εj

, (10.18)

which leads to the Fermi-Dirac distribution,

⟨nj⟩F.D. =
1

eβ(εj−µ) + 1
. (10.19)

where F.D. stands for Fermi-Dirac.

Eq. (10.19) is plotted in Fig. 10.3. We again expect a smoother curve at higher temper-
ature, and as T → 0, the fermions tends to stay on energy levels lower than µ. We call
the energy levels with fermions the occupied orbitals, and the empty levels are called un-
occupied orbitals. The hypersurface that separates the occupied and unoccupied orbitals is
called the Fermi-surface. In this example, the Fermi-surface is simply defined by the chem-
ical potential µ, which is equal to the Fermi energy εF . Electrons in metals can usually be
approximated as non-interacting fermions.

Figure 10.3: Fermi-Dirac distribution (choosing µ = 1).

In summary:

⟨nj⟩F.D.
B.E.

=
1

eβ(εj−µ) ± 1
. (10.20)

where + corresponds to the Fermi-Dirac distribution and − corresponds to the Bose-
Einstein distribution. At zero temperature T = 0, we have

⟨nj⟩F.D. =

1, ε < µ;
0, ε > µ.

⟨nj⟩B.E. =

Nmax, ε = µ;
0, ε > µ.

(10.21)
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10.3.4 Classical limit: Boltzmann distribution

The classical limit happens at T →∞ and ρ→ 0, i.e. the high temperature and low density
limit. When the temperature T is high, the distributions of different particles are all flat,
so there is no difference between the distribution patterns of fermions and bosons. When
the particle density ρ is low, it is hard for a particle to meet other particles, so we won’t see
the effect of different parity symmetries, thus no difference between fermions and bosons.

At the high-T low-ρ limit, the occupation number of each single-particle state εj must be
very small: ⟨nj⟩ << 1, which leads to eβ(εj−µ) ± 1 >> 1, i.e.

eβ(εj−µ) >> 1. (10.22)

Therefore, ⟨nj⟩ becomes

⟨nj⟩cl = e−β(εj−µ) (10.23)

which agrees with the classical grand canonical distribution.

The average of the total particle number is

⟨N ⟩ =
∑
j

⟨nj⟩ =
∑
j

e−β(εj−µ) = eβµ
∑
j

e−βεj . (10.24)

So

⟨nj⟩cl = ⟨N ⟩ e−βϵj∑
j e
−βϵj (10.25)

which gives the Boltzmann distribution.
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Lecture 11: Langevin Equation I

11.1 Non-equilibrium phenomena

In the previous lectures, we discussed thermodynamical and statistical properties of equi-
librium systems, where the macroscopic observables remain invariant with respect to
time. The behavior of a system at equilibrium is governed by the ensemble theory, where
the key quantity is the partition function.

However, an equilibrium system is rather ideal. The real-life systems or processes are
mostly non-equilibrium. A non-equilibrium system usually experiences a flow of en-
ergy or matter. Therefore, the non-equilibrium macroscopic properties are time-dependent.
Here are some examples of non-equilibrium phenomena: heat transport, charge transfer,
chemical reactions, etc.

Fig. 11.1 shows an example of a non-equilibrium process caused by the external distur-
bance. At equilibrium, there is no flow of charge in the electrolyte solution, and the aver-
age current ⟨j⟩ is zero. At time t1, an electric field E is applied, and the charge ions begin
to flow, and the charge current ⟨j(t)⟩ reaches to the maximum proportional to E within a
relaxation time τrelax. At time t2, E is turned off, and the electric current ⟨j(t)⟩ drops to
zero within a relaxation time τrelax.

Figure 11.1: Non-equilibrium current produced by a electric field between t1 and t2.

We should interpret ⟨j(t)⟩ as the non-equilibrium ensemble average. Once the initial con-
dition x0 is specified, the profile of j(t;x0) is fixed 1. Therefore the non-equilibrium en-

1The initial condition here plays a similar role as the seed of a random number generator.
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semble average is the average over all initial conditions according to the distribution of
the system 2, i.e.,

⟨j(t)⟩ =
∫

dx0f (x0)j(t;x0). (11.1)

where f (x0) is the ensemble distribution that the system obeys.

Onsager’s regression hypothesis

When left undisturbed, a non-equilibrium system will relax to the equilibrium state. On-
sager’s regression hypothesis relates the macroscopic relaxation to the microscopic fluc-
tuation process:

The relaxation of macroscopic non-equilibrium disturbances is governed by the same laws as
the regression of spontaneous microscopic fluctuations in an equilibrium system.

This hypothesis can be proved by the linear response theory, which requires the knowledge
of the time correlation function (TCF). We will leave the Onsager’s regression hypothesis
unproved for now, and change gear to quantitative description and modeling of non-
equilibrium systems.

11.2 Time correlation function

In the equilibrium statistical mechanics, the partition function is key to evaluating the
time-independent thermal properties. Away from equilibrium, the time correlation func-
tion is used in describing the dynamics of the thermal properties. A general form of the
time correlation function of dynamical variables A and B is defined as

CAB(t, t′) = ⟨A(t)B(t′)⟩, (11.2)

which is the non-equilibrium ensemble average of the product of two variables at different
times. CAB(t, t′) tells us the the correlation of two variables with respect to time. The
average ⟨·⟩ can be interpreted as the average over all initial conditions x0, or the average
over a long period of time, and the two are equivalent assuming the system is ergodic:

⟨A(t)B(t′)⟩ =
∫

dx0f (x0)A(t;x0)B(t′;x0),

or ⟨A(t)B(t′)⟩ = lim
s→∞

1
s

∫ s

0
dsA(t + s)B(t′ + s).

(11.3)

2In the Zwanzig book, the average is over a long period of time, which is equivalent to the average of
initial conditions with the assumption that the system is ergodic.
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If A(t) and B(t′) are uncorrelated, then

⟨A(t)B(t′)⟩ = ⟨A(t)⟩⟨B(t′)⟩ (11.4)

.

In this lecture, we are interested in the autocorrelation function, which is a time correlation
function of a variable with itself:

CAA(t, t′) = ⟨A(t)A(t′)⟩. (11.5)

The autocorrelation function CAA(t, t′) tells us how fast the system ”forgets” its past. In
fact, for time-invariant systems (e.g., when there is no driving force), only the difference
t′ − t matters. Therefore, we can simplify Eq. (11.5) as

CA(t) = ⟨A(0)A(t)⟩. (11.6)

One important time correlation function is the velocity correlation function

⟨vα(0)vα(t)⟩, α = x,y,z, (11.7)

which is related to the self-diffusion coefficient of the Einstein’s equation of diffusion.
In the following, we drop the subscript α for simplicity. Fig. 11.2 shows a qualititive
sketch of the velocity correlation function of liquid3. The correlation time is of the scale
of picosecond.

Figure 11.2: Velocity correlation function for a liquid.

Another example is the correlation function for instantaneous fluctuations. Let A(t) be
a thermal property if the system, and ⟨A⟩ be the time-independent equilibrium average,
the fluctuation is defined as

δA(t) = A(t)− ⟨A⟩. (11.8)

3Introduction to Modern Statistical Mechanics by David Chandler, p240.
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The correlation funciton of δA(t) is

CδA(t) = ⟨δA(0)δA(t)⟩ = ⟨A(0)A(t)⟩ − ⟨A⟩2. (11.9)

We examine Eq. (11.9) at t→ 0 and t→∞:

CδA(0) = ⟨δA(0)δA(0)⟩ = ⟨(δA)2⟩
lim
t→∞

CδA(t) = ⟨δA(0)⟩⟨δA(t)⟩ = 0 (11.10)

where we used the fact that at long time, the system will forget its past and δA(t) be-
comes uncorrelated to δA(0). Since the average fluctuation should be zero, i.e., ⟨δA(t)⟩ = 0,
limt→∞CδA(t) = 0.

Now that we have learned the concept if the time correlation function, we are going to
introduce a widely used framework to describe non-equilibrium dynamics based on the
Langevin equation.

11.3 Brownian motion

The Brownian motion describes the random motion of a small particle in a fluid. The
fluctuations of the molecules in the fluid kick or pull the particle, causing the particle
to move randomly. Fig. 11.3 illustrates a two-dimensional Brownian motion of a particle
(the big yellow dot) in a medium (blue dots). The irregular black line indicates the path of
the Brownian particle, and the red arrow indicates the instantaneous force the Brownian
particle experiences. The spatial distribution of the Brownian particle is described by
Einstein’s diffusion equation. We will skip the discussion of the diffusion equation and
focus on the time-dependent motion of the Brownian particle.

Figure 11.3: Two-dimensional Brownian motion.

Although describing the force that the particle experiences is complicated, the motion
still obeys Newton’s laws. Consider a one-dimensional motion of a particle with mass m,
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position x and velocity v. Let F(t) denote the total instantaneous force that the particle
experiences at time t, then

m
dv
dt

= F(t). (11.11)

While we cannot get the exact form of F(t), we can find an approximation that contains
the leading components of F(t). In a real liquid with viscosity, F(t) is dominated by the
friction force

friction force = −ζv.

This friction force is caused by the movement of the particle, and reduces its velocity v
until it becomes zero. We know that this is not the case since the particle keeps on moving
for a long enough time. At thermal equilibrium, ⟨v2⟩eq = kBT /m , 0. There must be an-
other component in F(t) that drives the particle, and this component is due to the kicks of
the medium (also called a heat bath), denoted by δF(t). Therefore, the instantaneous force
can be approximated by the sum of friction term due to the motion in the medium and
the instantaneous (seemingly random) forces exerted on the particle from the molecules
in the medium

F(t) = −ζv + δF(t). (11.12)

Eq. (11.12) is an example of the fluctuation-dissipation theorem, and leads to the famous
Langevin equation.

11.4 Langevin equation

The Langevin equation for a Brownian particle is

m
dv
dt

= −ζv + δF(t) (11.13)

where the total force has been partitioned into a systematic part (the friction) and a fluc-
tuating part (noise).

Remarks
Since the Langevin equation controls the velocity of a particle, and the velocity is related
to the kinetic energy, and hence the temperature of the system, we can treat the Langevin
equation as a thermostat for equilibrium systems. We have seen the Nosé-Hoover ther-
mostat in our previous lectures. In this lecture, we will not talk about the equilibrium
thermostat, but use the Langevin equation as a equation of motion at non-equilibrium.

Let’s now take a closer look at the noise δF(t). In a time-invariant medium, the average
of the noise must be zero, i.e., ⟨δF(t)⟩ = 0. We can assume that δF(t) has a Gaussian
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distribution. Moreover, the noise should be uncorrelated at different times: ⟨δF(t)δF(t′)⟩ ∝
δ(t − t′). In summary,

⟨δF(t)⟩ = 0, ⟨δF(t)δF(t′)⟩ = 2Bδ(t − t′), (11.14)

where B measures the strength of the fluctuating force.

11.4.1 Solving the Lagevin equation

The Langevin equation in Eq. (11.13) is a first-order linear inhomogeneous differential
equation, the solution of which can be found at the end of this lecture. The solution is

v(t) = e−ζt/mv(0) +
∫ t

0
dτe−ζ(t−τ)/mδF(τ)

m
. (11.15)

The first term gives an exponential decay of the initial velocity due to friction, and the
second term increases the velocity due to the random noise. A more straightforward in-
dicator is the mean squared velocity:

⟨v(t)2⟩ = 1 + 2 + 3 , (11.16)

where

1 = e−2ζt/m⟨v(0)2⟩ (11.17)

comes from the friction and goes to zero at long time;

2 =
〈
2v(0)e−ζt/m

∫ t

0
dτe−ζ(t−τ)/mδF(τ)

m

〉
= 2⟨v(0)⟩e−ζt/m

∫ t

0
dτe−ζ(t−τ)/m ⟨δF(τ)⟩

m

(11.18)

is the cross term and is equal to zero since the average of the noise is zero ⟨δF(t)⟩ = 0 (we
also used the fact that v(0) and δF(t) are not correlated);

3 =
〈(∫ t

0
dτ1e

−ζ(t−τ1)/mδF(τ1)
m

)(∫ t

0
dτ2e

−ζ(t−τ2)/mδF(τ2)
m

)〉
=

∫ t

0
dτ1

∫ t

0
dτ2e

− ζ(2t−τ1−τ2)
m

⟨δF(τ1)δF(τ2)⟩
m2

=
∫ t

0
dτ1

∫ t

0
dτ2e

− ζ(2t−τ1−τ2)
m

2Bδ(τ1 − τ2)
m2

=
B
ζm

(1− e−2ζt/m)

(11.19)

is due to the noise.
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Therefore, the mean squared velocity is

⟨v(t)2⟩ = e−2ζt/m⟨v(0)2⟩+ B
ζm

(1− e−2ζt/m). (11.20)

At long enough time, ⟨v(t)2⟩ becomes

lim
t→∞
⟨v(t)2⟩ =

B
ζm

. (11.21)

On the other hand, at long time limit, the mean squared velocity should approach its
equilibrium value kBT /m, therefore

B = ζkBT . (11.22)

This is know as the fluctuation-dissipation theorem, which gives the quantitative relation-
ship between the strength of the random noise B and the magnitude of the friction (or
dissipation) ζ.

Appendix: Solving first-order linear differential equations

Homogeneous differential equations

The first order homogeneous differential equation has the form

dy
dt

+w(t)y = 0, (11.23)

which can be rewritten as

dy
y

= −w(t)dt. (11.24)

Integrating both sides, we get ∫ y

y(0)

1
y

dy =
∫ t

0
−w(t)dt,

lny − lny(0) = −W (t) +W (0),

(11.25)

where W (t) is the antiderivative of w(t). Absorbing y(0) and W (0) into a factor A, we get

y = Ae−W (t). (11.26)

Example When δF(t) is zero, Eq. (11.13) becomes a homogeneous differential equation

m
dv
dt

= −ζv, (11.27)
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where w(t) = ζ/m, therefore W (t) = ζt/m. The solution is

v(t) = v(0)e−ζt/m. (11.28)

With only friction, v(t) decays to zero exponentially.

Inhomogeneous differential equations

The inhomogeneous differential equation has the form

dy
dt

+w(t)y = f (t). (11.29)

Suppose h(t) is a solution to the inhomogeneous DE Eq. (11.29), and g(t) is a solution to
the corresponding homogeneous DE Eq. (11.23), then it is obvious that h(t) + g(t) is also
a solution to Eq. (11.29). Therefore, the solution y(t) can be a specific solution plus the
homogeneous solution g(t),

y(t) = g(t) + h(t) = Ae−W (t) + h(t), (11.30)

where h(t) is a specific solution. Determining h(t) requires guessing. We guess h(t) has the
form similar to g(t), but replace the constant A with a function a(t):

h(t) = a(t)e−W (t). (11.31)

Substituting h(t) into Eq. (11.29), we get

da
dt
e−W (t) − a(t)e−W (t)w(t) +w(t)a(t)e−W (t) = f (t), (11.32)

which can be simplified as

da
dt

= f (t)eW (t) (11.33)

therefore,

h(t) = e−W (t)
∫ t

0
f (τ)eW (τ)dτ =

∫ t

0
f (τ)eW (τ)−W (t)dτ (11.34)

where we assumed a(0) = 0 without lose of generality.

Therefore the general solution to Eq. (11.29) is

y(t) = Ae−W (t) +
∫ t

0
f (τ)eW (τ)−W (t)dτ. (11.35)

Exercise Derive Eq. (11.15).
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Lecture 12: Langevin Equation II

In the second part of the Langevin equation lecture, we will see some applications of the
Langevin equation, and discuss more general and complicated extensions to the original
form of the Langevin equation.

12.1 Characterizing the Brownian motion

We evaluate the velocity autocorrelation function ⟨v(t)v(t′)⟩ and the mean square displace-
ment ⟨∆x(t)2⟩ from the solution of the Langevin equation Eq. (11.15).

12.1.1 Velocity autocorrelation function

The velocity autocorrelation function Cv(t, t′) = ⟨v(t)v(t′)⟩ is computed from the Langevin
equation as1

Cv(t, t′) =
〈(
e−

ζt
m v(0) +

∫ t

0
dτ1e

− ζ(t−τ1)
m

δF(τ1)
m

)e− ζt′m v(0) +
∫ t′

0
dτ2e

− ζ(t′−τ2)
m

δF(τ2)
m

〉
= e−

ζ(t+t′ )
m ⟨v(0)2⟩+ B

mζ

(
e−

ζ|t′−t|
m − e−

ζ(t+t′ )
m

)
.

(12.1)

From last lecture, we learned that the mean square velocity is ⟨v(t)2⟩ = B/ζm, therefore,

Cv(t, t′) =
B
mζ

e−
ζ|t′−t|
m . (12.2)

According to the fluctuation-dissipation theorem, B = ζkBT , we get

Cv(t, t′) =
kBT
m

e−
ζ|t′−t|
m (12.3)

which indicates that the velocity correlation decays exponentially with respect to the time
difference |t − t′ |.

1One can find the computational details at the end of the lecture
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12.1.2 Mean squared displacement

We first introduce the Einstein’s formula for the mean squared displacement of a diffusing
particle

⟨∆x(t)2⟩ = 2Dt (12.4)

where D is called the self-diffusion coefficient. Now we can figure out the value of D by
evaluating ⟨∆x(t)2⟩.

The displacement from time 0 to time t is defined as

∆x(t) =
∫ t

0
dτ v(τ). (12.5)

Therefore2

⟨∆x(t)2⟩ =
〈∫ t

0
dτ1 v(τ1)

∫ t

0
dτ2 v(τ2)

〉
=

∫ t

0
dτ1

∫ t

0
dτ2 ⟨v(τ1)v(τ2)⟩

=
∫ t

0
dτ1

∫ t

0
dτ2

B
mζ

e−
ζ|τ1−τ2 |

m

=
2B
ζ2

(
t − m

ζ
+
m
ζ
e−

ζ
m t

)
.

(12.6)

Again, using the conclusion from the fluctuation-dissipation theorem, we have

⟨∆x(t)2⟩ =
2kBT
ζ

(
t − m

ζ
+
m
ζ
e−

ζ
m t

)
(12.7)

A qualitative plot3 of the mean squared displacement is shown in Fig. 12.1.

We examine Eq. (12.7) at two limits: t << 1 and t→∞.

• t → 0. We have ζt
m << 1 assuming that ζ/m is bounded, thus we can Taylor expand

e−
ζ
m t,

lim
t→0
⟨∆x(t)2⟩ =

2kBT
ζ

[
t − m

ζ
+
m
ζ

(
1− ζ

m
t +

1
2

( ζ
m

)2
t2 + · · ·

)]
≈ kBT

m
t2

= ⟨v(t)2⟩t2.

(12.8)

2Find the full derivation at the end of the lecture.
3Chandler book Fig. 8.10.
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Figure 12.1: Mean squared displacement of a diffusing particle.

Therefore, at small t, ⟨∆x(t)2⟩ increases quadratically with time, due to the inertial
behavior from the initial velocity. This trend is referred to as ballistic motion.

• t→∞. At very long time t, we have

lim
t→∞
⟨∆x(t)2⟩ =

2kBT
ζ

t. (12.9)

At long times, the effects of the noise are dominant, and ⟨∆x(t)2⟩ increases only
linearly with time. This trend is indicative of a random walk, diffusive motion.

Compare the long time limit Eq. (12.9) with Einstein’s formula Eq. (12.4), we derive

D =
kBT
ζ
. (12.10)

12.2 Application: chemical reactions

To illustrate how we can use Langevin equation to study the kinetics of chemical reactions,
we use the following reaction as an example:

A
kAB−−−⇀↽−−−
kBA

B

where A and B are two chemical species in the system at very low concentration, kAB and
kBA are the forward and back reaction rate constants respectively.
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For simplicity, we use A(t) and B(t) as the concentrates of the two chemicals, and the total
concentrate A(t) +B(t) = Aeq +Beq is a constant. The basic rate equations are

dA
dt

= −kABA+ kBAB,

dB
dt

= −kBAB+ kABA.
(12.11)

Suppose the deviation of A from the equilibrium value Aeq is C, then

A = Aeq +C, B = Beq −C. (12.12)

At equilibrium, Aeq and Beq obey the detailed balance condition,

kBAAeq = kABBeq. (12.13)

Now we can reduce Eq. (12.11) to one equation

dC
dt

= −(kAB + kBA)C, (12.14)

and the solution is

C(t) = C(0)e−(kAB+kBA)t. (12.15)

It seems that C(t) becomes zero exponentially with time. However, if we think about fluc-
tuations at equilibrium, the mean squared value ⟨C(t)2⟩ should be constant, since there
are always thermal fluctuations! To avoid C(t) decaying to zero, we add a fluctuation term
as in the Langevin equation

dC
dt

= −(kAB + kBA)C + δF(t). (12.16)

The fluctuation-dissipation theorem requires

⟨δF(t)δF(t′)⟩ = 2(kAB + kBA)⟨C2⟩eqδ(t − t′). (12.17)

By observing the particle number fluctuations over a long time, one can find the reaction
rate constants.

12.3 Generalized Langevin equations

Given a Hamiltonian

H =
p2

2m
+U (x), (12.18)
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the Hamilton’s equation of motion gives

dx
dt

=
∂H
∂p

=
p

m
,

dp
dt

= −∂H
∂x

= −dU
dx

.

(12.19)

The Langevin equation modifies dp/dt by adding the friction and fluctuation parts,

dx
dt

=
p

m
,

dp
dt

= −dU
dx
− ζ

p

m
+ δF(t).

(12.20)

One can then get the trajectory of x(t) and p(t) by integrating the above equations with,
e.g., velocity-Verlet algorithm. Note that even though the form of dx/dt remains the same
as in the Hamiltons EOMs, since p(t) experiences friction and fluctuation forces, x(t) will
experience them as well through p(t)/m.

Now we make our model a little more realistic (and more complicated) by adding a ”mem-
ory” to the friction. This means that the friction ratio is no longer a constant ζ, but a
memory function ζ→ K(t), and the frictional force becomes

−ζv(t)→−
∫ t

−∞
ds K(t − s)v(s). (12.21)

Since the friction force has a memory now, the fluctuation force can no longer be white
noise. Otherwise the system will not approach equilibrium at long times. This type of
problem is called non-Markovian.

We illustrate how non-Markovian behavior can arise by showing an example of the Brow-
nian motion of a harmonic oscillator. In fact, we are going to examine the time evolution
of x(t) by eliminating the momentum p(t).

Starting from the Markovian Langevin equation Eq. (12.20) and assuming that p(−∞) = 0,
we can get the solution of p(t)

p(t) =
∫ t

−∞
e−

ζ
m (t−s)

(
−mω2x(s) + δF(s)

)
. (12.22)

Substituting Eq. (12.22) back into dx/dt, we get

dx(t)
dt

= −
∫ t

−∞
K(t − s)x(s)ds+Fx(t), (12.23)

where K(t − s) is the memory function for the friction force, and Fx(t) is the fluctuating

90



12.4. BROWNIAN MOTION IN A HARMONIC OSCILLATOR BATH

”force” for the position4

K(t − s) = ω2e−
ζ
m |t−s|,

Fx(t) =
1
m

∫ t

−∞
ds e−

ζ
m (t−s)δF(s).

(12.24)

At equilibrium, the mean squared position is

⟨x2⟩eq =
kBT

mω2 , (12.25)

which leads to

⟨Fx(t)Fx(t′)⟩ =
kBT

mω2K(|t − t′ |). (12.26)

The above equation is the non-Markovian version of the fluctuation-dissipation theorem,
where the correlation function of the new noise is proportional to the memory function
of the new friction.

12.4 Brownian motion in a harmonic oscillator bath

In this section, we study a prototype for many statistical mechanical models - the Brown-
ian motion in a harmonic oscillator bath. We first define the Hamiltonian

H =HS +HB, (12.27)

where HS is the system Hamiltonian, and HB is the heat bath Hamiltonian which also
includes the coupling between the system and the bath. We use x and p as the coordinate
and conjugate momentum for the Brownian particle with mass m, and use {qj} and {pj} as
the coordinates and conjugate momenta for the heat bath oscillators with masses 1. HS
and HB are then

HS =
p2

2m
+U (x),

HB =
∑
j

p2
j

2
+

1
2
ω2
j

qj − γjω2
j

x

2

,
(12.28)

where ωj is the frequency of the jth oscillator and γj measures the strength of coupling
of the Brownian particle with the jth oscillator.

4Note that Fx(t) does not have the unit of force, but the unit of velocity.
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Now we can write down the Hamilton’s equation of motion of the Brownian particle and
the oscillators

dx
dt

=
p

m
,

dp
dt

= −dU (x)
dx

+
∑
j

γj(qj −γjx/ω2
j );

dqj
dt

= pj ,
dpj
dt

= −ω2
j qj +γjx.

(12.29)

Since {qj} and {pj} only depends on x, we can solve their equations of motion assuming
x(t) is known5. Then we can put the solutions of {qj(t)} and {pj(t)} back to dp/dt, and
obtain

dp
dt

= −dU (x)
dx

−
∫ t

−∞
ds K(t − s)

p(s)
m

+Fp(t). (12.30)

With the above setting, we get a solution to the non-Markovian Langevin equation! The
memory function and the ”noise” are

K(t) =
∑
j

γj

ω2
j

cosωjt,

Fp(t) =
∑
j

γjpj(0)
sinωjt

ωj
+
∑
j

γj

qj(0)−
γj

ω2
j

x(0)

cosωjt.
(12.31)

This prototype is powerful in the sense that one can adjust the frequencies {ωj} and the
coupling strength {γj} to produce many different forms of memory functions, and thus
this model can be used to study a variety of practical problems.

12.5 More on Onsager’s regression hypothesis*

In the last lecture, we gave the Onsager’s regression hypothesis without proof. Here we give
an analysis based on a simplified version of the linear response theory.

Consider a thermal observable A(t), and we relate the macroscopic displacement ∆⟨A(t)⟩
with the correlation function of the microscopic fluctuation ⟨δA(0)δA(t)⟩.

Given a Hamiltonian, the equilibrium average of A is

⟨A⟩ =
Tr[e−βHA]
Tr[e−βH ]

. (12.32)

5See Zwanzig Ch1 Eq. (1.89) and Eq. (1.90) for the solutions.
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At time t = 0, we turn on a small perturbation of a field f coupled to A, the Hamiltonian
becomes

H̃ =H +∆H =H − f A. (12.33)

The initial value of A is

⟨A(0)⟩ =
Tr[e−β(H+∆H)A(0,x)]

Tr[e−β(H+∆H)]
. (12.34)

and A(t) becomes

⟨A(t)⟩ =
Tr[e−β(H+∆H)A(t,x)]

Tr[e−β(H+∆H)]
, (12.35)

where x is a microstate depending on the initial condition.

Since ∆H is very small, we can Taylor expand Eq. (12.35), and get

⟨A(t)⟩ ≈ ⟨A⟩ − β[⟨∆HA(t,x)⟩ − ⟨A⟩⟨∆H⟩] +O[(β∆H)2]. (12.36)

The macroscopic displacement is

∆⟨A(t)⟩ = ⟨A(t)⟩ − ⟨A⟩
= β[⟨∆HA(t,x)⟩ − ⟨A⟩⟨∆H⟩] +O[(β∆H)2]

(12.37)

Inserting ∆H = −f A, we get

∆⟨A(t)⟩ = βf ⟨δA(0)δA(t)⟩+O(f 2) (12.38)

which agrees with the Onsager’s regression hypothesis.

Appendix 1: Derivation of Eq. (12.1)

The velocity autocorrelation function is evaluated by

Cv(t, t′) =
〈(
e−

ζt
m v(0) +

∫ t

0
dτ1e

− ζ(t−τ1)
m

δF(τ1)
m

)e− ζt′m v(0) +
∫ t′

0
dτ2e

− ζ(t′−τ2)
m

δF(τ2)
m

〉
= e−

ζ(t+t′ )
m ⟨v(0)2⟩

+ e−
ζt
m

∫ t′

0
dτ2e

− ζ(t′−τ2)
m
⟨v(0)δF(τ2)⟩

m
+ e−

ζt′
m

∫ t

0
dτ1e

− ζ(t−τ1)
m
⟨v(0)δF(τ1)⟩

m

+
∫ t

0
dτ1

∫ t′

0
dτ2e

− ζ(t+t′−τ1−τ2)
m

⟨δF(τ1)δF(τ2)⟩
m2

= e−
ζ(t+t′ )
m ⟨v(0)2⟩+

∫ t

0
dτ1

∫ t′

0
dτ2e

− ζ(t+t′−τ1−τ2)
m

2Bδ(τ1 − τ2)
m2

(12.39)
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We evaluate the following integral:∫ t

0
dτ1

∫ t′

0
dτ2e

− ζ(t+t′−τ1−τ2)
m

2Bδ(τ1 − τ2)
m2 . (12.40)

Suppose t′ > t, then (0, t] ∈ (0, t′], and for ∀τ1, we can find a τ2 s.t. τ2 = τ1. Therefore, we
need to integrate over τ2 first to remove the Delta function,∫ t

0
dτ1

∫ t′

0
dτ2e

− ζ(t+t′−τ1−τ2)
m

2Bδ(τ1 − τ2)
m2

=
∫ t

0
dτ1

∫ t′

0
dτ2e

− ζ(t+t′−τ1−τ2)
m

2Bδ(τ1 − τ2)
m2


=
∫ t

0
dτ1e

− ζ(t+t′−2τ1)
m

2B
m2

=
B
mζ

(
e−

ζ(t′−t)
m − e−

ζ(t+t′ )
m

)
.

(12.41)

Similarly, if t > t′, we have∫ t

0
dτ1

∫ t′

0
dτ2e

− ζ(t+t′−τ1−τ2)
m

2Bδ(τ1 − τ2)
m2 =

B
mζ

(
e−

ζ(t−t′ )
m − e−

ζ(t+t′ )
m

)
. (12.42)

Therefore, for the general case,∫ t

0
dτ1

∫ t′

0
dτ2e

− ζ(t+t′−τ1−τ2)
m

2Bδ(τ1 − τ2)
m2 =

B
mζ

(
e−

ζ|t−t′ |
m − e−

ζ(t+t′ )
m

)
. (12.43)

We then get the final form of Cv(t, t′),

Cv(t, t′) = e−
ζ(t+t′ )
m ⟨v(0)2⟩+ B

mζ

(
e−

ζ|t′−t|
m − e−

ζ(t+t′ )
m

)
. (12.44)

Appendix 2: Derivation of Eq. (12.6)

We evaluate the integral of ⟨∆x(t)2⟩. The tricky part is how to treat an integrand with
absolute values. We have already worked with an example in Homework 3, where we
divide the integration domains according to the absolute value. Here we use the same
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strategy. ∫ t

0
dτ1

∫ t

0
dτ2

B
mζ

e−
ζ|τ1−τ2 |

m

=
B
mζ

∫ t

0
dτ1

(∫ τ1

0
dτ2 e

− ζ(τ1−τ2)
m +

∫ t

τ1

dτ2 e
− ζ(τ2−τ1)

m

)
=
B

ζ2

∫ t

0
dτ1

(
e−

ζ(τ1−τ2)
m

∣∣∣∣∣τ1

0
− e−

ζ(τ2−τ1)
m

∣∣∣∣∣t
τ1

)
=
B

ζ2

∫ t

0
dτ1

(
2− e−

ζ
mτ1 − e−

ζ
m (t−τ1)

)
=

2B
ζ2

(
t − m

ζ
+
m
ζ
e−

ζ
m t

)
.

(12.45)
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